Publications & Preprints

Author Title [ Type(Asc)] Year
Paquette, C. , & Vavasis, S. . (2019). Potential-based analyses of first-order methods for constrained and composite optimization.
Vavasis, S. , Papoulia, K. , & Hirmand, M. . (2018). Second-order cone interior-point method for quasistatic and moderate dynamic cohesive fracture.
Karimi, S. , & Vavasis, S. . (2017). A single potential governing convergence of conjugate gradient, accelerated gradient and geometric descent.
Karimi, S. , & Vavasis, S. . (2016). A unified convergence bound for conjugate gradient and accelerated gradient.
Vavasis, S. . (2013). Some notes on applying computational divided differencing in optimization.
Elkin, L. , Pong, T. Kei, & Vavasis, S. . (2013). Convex relaxation for finding planted influential nodes in a social network.
Karimi, S. , & Vavasis, S. . (2012). Detecting and correcting loss of independence in nonlinear conjugate gradient.
Vavasis, S. A. . (2008). A new secant method for unconstrained optimization.
Srijuntongsiri, G. , & Vavasis, S. A. . (2007). Properties of polynomial bases used in line-surface intersection algorithm.
Srijuntongsiri, G. , & Vavasis, S. A. . (2007). A Condition Number Analysis of a Surface-Surface Intersection Algorithm.
Vavasis, S. . (2006). A conjecture that the roots of a univariate polynomial lie in a union of annuli.
Srijuntongsiri, G. , & Vavasis, S. . (2004). A Fully Sparse Implementation of a Primal- Dual Interior-Point Potential Reduction Method for Semidefinite Programming.
Vavasis, S. . (2003). A Bernstein-Bézier Sufficient Condition for Invertibility of Polynomial Mappings.
Vavasis, S. . (1999). A note on efficient computation of the gradient in semidefinite programming.
Vavasis, S. A. . (1996). QMG: Software for finite-element mesh generation.
Bond, D. M. , & Vavasis, S. A. . (1994). Fast Wavelet Transforms for Matrices Arising from Boundary Element Methods. Cornell Theory Center, Cornell University.
Hsu, H. - W. , Lean, M. H. , Liu, P. L. - F. , & Vavasis, S. A. . (1991). A boundary element method for three-dimensional free surface flow. Xerox.
Vavasis, S. A. . (1990). A note on wavelet bases for two-dimensional surfaces. Department of Computer Science, Cornell University.
Vavasis, S. A. , & Zippel, R. . (1990). Proving polynomial-time for sphere-constrained quadratic programming. Department of Computer Science, Cornell University.