Publications

Search
Author Title Type [ Year(Asc)]
2010
Edwards, A. , & Layton, A. T. . (2010). Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. American Journal of Physiology-Renal Physiology, 299, F616–F633. American Physiological Society Bethesda, MD.
Chen, J. , Edwards, A. , & Layton, A. T. . (2010). Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. American Journal of Physiology-Renal Physiology, 298, F1369–F1383. American Physiological Society Bethesda, MD.
Layton, A. T. . (2010). Feedback-mediated dynamics in a model of a compliant thick ascending limb. Mathematical biosciences, 228, 185–194. Elsevier.
Chen, J. , Sgouralis, I. , Moore, L. C. , Layton, H. E. , & Layton, A. T. . (2010). A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology-Renal Physiology, 300, F669–F681. American Physiological Society Bethesda, MD.
Layton, A. T. . (2010). A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology-Renal Physiology, 300, F372–F384. American Physiological Society Bethesda, MD.
Layton, A. T. , Pannabecker, T. L. , Dantzler, W. H. , & Layton, H. E. . (2010). Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 298, F973–F987. American Physiological Society Bethesda, MD.
Layton, A. T. . (2010). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300, F356–F371. American Physiological Society Bethesda, MD.
2009
Edwards, A. , Chen, J. , & Layton, A. T. . (2009). Impact of Rat Outer Medullary Architecture on Oxygen Distribution. The FASEB Journal, 23, 970–12. Federation of American Societies for Experimental Biology.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2009). Waveform distortion in TGF-mediated limit-cycle oscillations: Effects of TAL flow. The FASEB Journal, 23, 804–14. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2009). On the efficiency of spectral deferred correction methods for time-dependent partial differential equations. Applied numerical mathematics, 59, 1629–1643. North-Holland.
Layton, A. T. . (2009). Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces. Computers & fluids, 38, 266–272. Pergamon.
Edwards, A. , Chen, J. , & Layton, A. T. . (2009). Impact of Rat Outer Medullary Architecture on Oxygen Distribution. Federation of American Societies for Experimental Biology.
Robel, A. , & Layton, A. . (2009). The Lorenz Model.
Layton, A. T. , Toyama, Y. , Yang, G. - Q. , Edwards, G. S. , Kiehart, D. P. , & Venakides, S. . (2009). of dorsal closure Drosophila morphogenesis: tissue force laws and the modeling This article describes a second generation mathematical model to investigate the forces that account for the dynamics of dorsal closure, a stage of Drosophila development which. HFSP Journal, 441.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2009). Waveform distortion in TGF-mediated limit-cycle oscillations: Effects of TAL flow. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2009). On the efficiency of spectral deferred correction methods for time-dependent partial differential equations. Applied Numerical Mathematics, 59, 1629–1643. North-Holland.
Layton, A. T. , Pannabecker, T. L. , Dantzler, W. H. , & Layton, H. E. . (2009). Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. American Journal of Physiology-Renal Physiology, 298, F962–F972. American Physiological Society Bethesda, MD.
Wang, J. , & Layton, A. . (2009). Numerical simulations of fiber sedimentation in Navier-Stokes flows. Communications in Computational Physics, 5, 61.
Layton, A. T. . (2009). Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces. Computers & Fluids, 38, 266–272. Pergamon.
J Beale, T. , & Layton, A. T. . (2009). A velocity decomposition approach for moving interfaces in viscous fluids. Journal of Computational Physics, 228, 3358–3367. Elsevier.

Pages