Publications

Search
[ Author(Desc)] Title Type Year
L
Layton, A. T. , & Edwards, A. . (2014). Transport Across Tubular Epithelia. In Mathematical Modeling in Renal Physiology (pp. 155–183). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Urine Concentration. In Mathematical Modeling in Renal Physiology (pp. 43–61). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Glomerular Filtration. In Mathematical Modeling in Renal Physiology (pp. 7–41). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Counter-Current Exchange Across Vasa Recta. In Mathematical Modeling in Renal Physiology (pp. 63–83). Springer, Berlin, Heidelberg.
Layton, A. T. . (2014). Impacts of Facilitated Urea Transporters on the Urine-Concentrating Mechanism in the Rat Kidney. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 191. American Mathematical Soc.
Layton, A. T. , & Edwards, A. . (2014). Solutions to Problem Sets. In Mathematical Modeling in Renal Physiology (pp. 185–218). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Tubuloglomerular Feedback. In Mathematical Modeling in Renal Physiology (pp. 85–106). Springer, Berlin, Heidelberg.
Layton, A. T. , & Olson, S. D. . (2014). Biological Fluid Dynamics: Modeling, Computations, and Applications. American Mathematical Society.
Layton, A. T. , & Edwards, A. . (2014). Mathematical Modeling in Renal Physiology. Springer.
Layton, A. T. . (2013). Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5, 557–573. John Wiley & Sons, Inc. Hoboken, USA.
Layton, A. T. , & Bankir, L. . (2013). Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate. Physiological reports, 1.
Layton, A. T. . (2012). A velocity decomposition approach for solving the immersed interface problem with Dirichlet boundary conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.
Layton, A. T. , & Wei, G. . (2012). Interface methods for biological and biomedical problems. John Wiley & Sons, Ltd Chichester, UK.
Layton, A. T. . (2012). Modeling transport and flow regulatory mechanisms of the kidney. International Scholarly Research Notices, 2012. Hindawi.
Layton, A. T. , & J Beale, T. . (2012). A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems-B, 17, 1139. American Institute of Mathematical Sciences.
Layton, A. T. . (2012). A Velocity Decomposition Approach for Solving the Immersed Interface Problem with Dirichlet Boundary Conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.
Layton, A. T. , Gilbert, R. L. , & Pannabecker, T. L. . (2012). Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 302, F830–F839. American Physiological Society Bethesda, MD.
Layton, A. T. , Dantzler, W. H. , & Pannabecker, T. L. . (2012). Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter. American Journal of Physiology-Renal Physiology, 302, F591–F605. American Physiological Society Bethesda, MD.
Layton, A. T. , Gilbert, R. L. , & Pannabecker, T. L. . (2012). Mathematical Modeling of Renal Function: Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 302, F830. American Physiological Society.
Layton, A. T. . (2012). A velocity decomposition approach for solving the immersed interface problem with dirichlet boundary conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.

Pages