Publications
Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 35, 920-927. doi:10.1016/j.ijhydene.2009.11.040
. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 34, 3-17. doi:10.1111/j.1574-6976.2009.00191.x
. (2010). Anode potential regulates microbial competition between anode-respiring bacteria and methanogens in the biofilm anode. In ACS National Meeting Book of Abstracts. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951545436&partnerID=40&md5=47bebe0ba5213c14473ffca8df45d124
. (2010). Biological hydrogen production: Prospects and challenges. Trends in Biotechnology, 28, 262-271. doi:10.1016/j.tibtech.2010.01.007
. (2010). Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environmental Science and Technology, 44, 948-954. doi:10.1021/es9025358
. (2010). Exploring microbial community in SMEC with two different wastewaters as electron donors. In ACS National Meeting Book of Abstracts. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-80051863104&partnerID=40&md5=ccdd3d302ae27d1d119b4363af3d0c72
. (2011). Hydrogen consumption in microbial electrochemical systems (MXCs): The role of homo-acetogenic bacteria. Bioresource Technology, 102, 263-271. doi:10.1016/j.biortech.2010.03.133
. (2011). A μl-scale micromachined microbial fuel cell having high power density. Lab on a Chip, 11, 1110-1117. doi:10.1039/c0lc00494d
. (2011). Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials, 239-240, 257-264. doi:10.1016/j.jhazmat.2012.08.072
. (2012). Miniaturizing microbial fuel cells for potential portable power sources: Promises and challenges. Microfluidics and Nanofluidics, 13, 353-381. doi:10.1007/s10404-012-0986-7
. (2012). Implication of diffusion and significance of anodic pH in nitrogen-recovering microbial electrochemical cells. Bioresource Technology, 142, 562-569. doi:10.1016/j.biortech.2013.05.075
. (2013). Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells. Bioresource Technology, 148, 208-214. doi:10.1016/j.biortech.2013.08.138
. (2013). The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors. Environmental Technology (United Kingdom), 34, 2105-2112. doi:10.1080/09593330.2013.808675
. (2013). Implication of endogenous decay current and quantification of soluble microbial products (SMP) in microbial electrolysis cells. RSC Advances, 3, 14021-14028. doi:10.1039/c3ra41116h
. (2013). Membranes for bioelectrochemical systems: challenges and research advances. Environmental Technology (United Kingdom), 34, 1751-1764. doi:10.1080/09593330.2013.822007
. (2013). A micro-scale microbial fule cell (MFC) having ultramicroelectrode (UME) anode. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 869-872). doi:10.1109/MEMSYS.2013.6474381
. (2013). A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices. Biosensors and Bioelectronics, 49, 410-414. doi:10.1016/j.bios.2013.06.001
. (2013). Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization. Chemical Engineering Journal, 243, 355-363. doi:10.1016/j.cej.2013.10.082
(2014). Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): A design suitable for scaling-up. Bioresource Technology, 163, 254-261. doi:10.1016/j.biortech.2014.03.165
. (2014). Microbial fuel cells as discontinuous portable power sources: Syntropic interactions with anode-respiring bacteria. ChemSusChem, 7, 1026-1029. doi:10.1002/cssc.201301085
. (2014).