Machine Learning Lab

Using Deep Learning and Reinforcement Learning to Tame Spatially Spreading Processes, at University of Waterloo, Wednesday, October 25, 2017

This was an invited talk for the Waterloo Institute for Complexity and Innovation (WICI) seminar series. The talk was recorded and can be watched from WICI's website here.

Abstract:

Recent advances in Artificial Intelligence and Machine Learning (AI/ML) allow us to learn predictive models and control policies for larger, more complex systems than ever before. However, some important real world domains such as...

Read more about Using Deep Learning and Reinforcement Learning to Tame Spatially Spreading Processes
BIRC Workshop On Deep Learning In Medicine, at University Hospital, London, Ontario, Canada, Monday, August 28, 2017:

This all-day workshop brough together researchers, students and medical professionals from medical imaging, image processing and machine learning to discuss what the new class of machine learning algorithms known collectively as Deep Learning are, how they are and could be used for medicine and what the impacts for medicine as a whole are of this technology. The workshop was hosted by the Biomedical Imaging Research Centre (BIRC) at the University of Western Ontario. I gave an introductory...

Read more about BIRC Workshop On Deep Learning In Medicine
Houtman, R.M. et al., 2013. Allowing a wildfire to burn: Estimating the effect on future fire suppression costs. International Journal of Wildland Fire, 22(7), pp.871–882.
Where a legacy of aggressive wildland fire suppression has left forests in need of fuel reduction, allowing wildland fire to burn may provide fuel treatment benefits, thereby reducing suppression costs from subsequent fires. The least-cost-plus-net-value-change model of wildland fire economics includes benefits of wildfire in a framework for evaluating suppression options. In this study, we estimated one component of that benefit – the expected present value of the reduction in suppression costs for subsequent fires arising from the fuel treatment effect of a current fire. To that end, we employed Monte Carlo methods to generate a set of scenarios for subsequent fire ignition and weather events, which are referred to as sample paths, for a study area in central Oregon. We simulated fire on the landscape over a 100-year time horizon using existing models of fire behaviour, vegetation and fuels development, and suppression effectiveness, and we estimated suppression costs using an existing suppression cost model. Our estimates suggest that the potential cost savings may be substantial. Further research is needed to estimate the full least-cost-plus-net-value-change model. This line of research will extend the set of tools available for developing wildfire management plans for forested landscapes.

Spatiotemporal planning involves making choices at multiple locations in space over some planning horizon to maximize utility and satisfy various constraints. In Forest Ecosystem Management, the problem is to choose actions for thousands of locations each year including harvesting, treating trees for fire or pests, or doing nothing. The utility models could place value on sale of lumber, ecosystem sustainability or employment levels and incorporate legal and logistical constraints on actions such as avoiding large contiguous areas of clearcutting. Simulators developed by forestry researchers provide detailed dynamics but are generally inaccesible black boxes. We model spatiotemporal planning as a factored Markov decision process and present a policy gradient planning algorithm to optimize a stochastic spatial policy using simulated dynamics. It is common in environmental and resource planning to have actions at different locations be spatially interelated; this makes representation and planning challenging. We define a global spatial policy in terms of interacting local policies defining distributions over actions at each location conditioned on actions at nearby locations. Markov chain Monte Carlo simulation is used to sample landscape policies and estimate their gradients. Evaluation is carried out on a forestry planning problem with 1,880 locations using a variety of value models and constraints. Index

Maryam, S. et al., 2017. Application of Probabilistically-Weighted Graphs to Image-Based Diagnosis of Alzheimer's Disease using Diffusion MRI. In SPIE Medical Imaging Conference on Computer-Aided Diagnosis. March 3. Orlando, FL, United States: International Society for Optics and Photonics. Available at: http://dx.doi.org/10.1117/12.2254164. Publisher's Version

The world’s aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Pages