Machine Learning Lab

Explore the UWECEML lab research by Domains, Methods and Tasks.

Subramanian, S.Ganapathi et al., 2021. Partially Observable Mean Field Reinforcement Learning. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 3–7 May. London, United Kingdom: International Foundation for Autonomous Agents and Multiagent Systems, pp. 537-545.
Traditional multi-agent reinforcement learning algorithms are not scalable to environments with more than a few agents, since these algorithms are exponential in the number of agents. Recent research has introduced successful methods to scale multi-agent reinforcement learning algorithms to many agent scenarios using mean field theory. Previous work in this field assumes that an agent has access to exact cumulative metrics regarding the mean field behaviour of the system, which it can then use to take its actions. In this paper, we relax this assumption and maintain a distribution to model the uncertainty regarding the mean field of the system. We consider two different settings for this problem. In the first setting, only agents in a fixed neighbourhood are visible, while in the second setting, the visibility of agents is determined at random based on distances. For each of these settings, we introduce a Q-learning based algorithm that can learn effectively. We prove that this Q-learning estimate stays very close to the Nash Q-value (under a common set of assumptions) for the first setting. We also empirically show our algorithms outperform multiple baselines in three different games in the MAgents framework, which supports large environments with many agents learning simultaneously to achieve possibly distinct goals.
Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) methods in the environmental sciences. Here, we present a scoping review of ML applications in wildfire science and management. Our overall objective is to improve awareness of ML methods among wildfire researchers and managers, as well as illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists. To that end, we first present an overview of popular ML approaches used in wildfire science to date, and then review the use of ML in wildfire science as broadly categorized into six problem domains, including: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. Furthermore, we discuss the advantages and limitations of various ML approaches relating to data size, computational requirements, generalizability, and interpretability, as well as identify opportunities for future advances in the science and management of wildfires within a data science context. In total, we identfied 300 relevant publications up to the end of 2019, where the most frequently used ML methods across problem domains included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. As such, there exists opportunities to apply more current ML methods — including deep learning and agent based learning — in the wildfire sciences, especially in instances involving very large multivariate datasets. We must recognize, however, that despite the ability of ML methods to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods, such as deep learning, requires a dedicated and sophisticated knowledge of their application. Finally, we stress that the wildfire research and management communities play an active role in providing relevant, high quality, and freely available wildfire data for use by practitioners of ML methods.
Ma, H. et al., 2020. Isolation Mondrian Forest for Batch and Online Anomaly Detection. IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2020. Available at: arXiv preprint arXiv:2003.03692. Also available at:

We propose a new method, named isolation Mon- drian forest (iMondrian forest), for batch and online anomaly detection. The proposed method is a novel hybrid of isolation forest and Mondrian forest which are existing methods for batch anomaly detection and online random forest, respectively. iMondrian forest takes the idea of isolation, using the depth of a node in a tree, and implements it in the Mondrian forest structure. The result is a new data structure which can accept streaming data in an online manner while being used for anomaly detection. Our experiments show that iMondrian forest mostly performs better than isolation forest in batch settings and has better or comparable performance against other batch and online anomaly detection methods.

Autoline.tv interview about our Driver Behaviour Learning project with Magna International

Recently I sat down to chat with John McElroy from Autoline.tv to talk about our Driver Behaviour Learning project in collaboration with Magna International and WatCar. We’re using Machine Learning to build predictive models of human driving in order to make future adaptive cruise...

Read more about Autoline.tv interview about our Driver Behaviour Learning project with Magna International
See also: Automotive
Locally Linear Embedding (LLE) is a nonlin- ear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruc- tion and linear embedding of points in the input space and embedding space, respectively. In this work, we propose two novel generative versions of LLE, named Generative LLE (GLLE), whose linear reconstruction steps are stochastic rather than deterministic. GLLE assumes that every data point is caused by its linear reconstruction weights as latent factors. The proposed GLLE algorithms can generate various LLE embeddings stochastically while all the generated embeddings relate to the original LLE embedding. We propose two versions for stochastic linear reconstruction, one using expectation maximization and another with direct sampling from a derived distribution by optimization. The proposed GLLE methods are closely related to and inspired by variational inference, factor analysis, and probabilistic principal component analysis. Our simulations show that the proposed GLLE methods work effectively in unfolding and generating submanifolds of data.
Sikaroudi, M. et al., 2020. Offline versus Online Triplet Mining based on Extreme Distances of Histopathology Patches. In International Conference on Intelligent Systems and Computer Vision (ISCV 2020) . Fez-Morrocco (virtual): IEEE, p. 8. Available at: https://arxiv.org/abs/2007.02200. Preprint
We analyze the effect of offline and online triplet mining for colorectal cancer (CRC) histopathology dataset containing 100,000 patches. We consider the extreme, i.e., farthest and nearest patches with respect to a given anchor, both in online and offline mining. While many works focus solely on how to select the triplets online (batch-wise), we also study the effect of extreme distances and neighbor patches before training in an offline fashion. We analyze the impacts of extreme cases for offline versus online mining, including easy positive, batch semi-hard, and batch hard triplet mining as well as the neighborhood component analysis loss, its proxy version, and distance weighted sampling. We also investigate online approaches based on extreme distance and comprehensively compare the performance of offline and online mining based on the data patterns and explain offline mining as a tractable generalization of the online mining with large mini-batch size. As well, we discuss the relations of different colorectal tissue types in terms of extreme distances. We found that offline mining can generate a better statistical representation of the population by working on the whole dataset.
Sikaroudi, M. et al., 2020. Supervision and Source Domain Impact on Representation Learning: A Histopathology Case Study. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'20). 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'20): IEEE Engineering in Medicine and Biology Society. Available at: https://embs.papercept.net/conferences/scripts/rtf/EMBC20_ContentListWeb_1.html#moat2-15_02. Conference Description

As many algorithms depend on a suitable representation of data, learning unique features is considered a crucial task. Although supervised techniques using deep neural networks have boosted the performance of representation learning, the need for a large set of labeled data limits the application of such methods. As an example, high-quality delineations of regions of interest in the field of pathology is a tedious and time-consuming task due to the large image dimensions. In this work, we explored the performance of a deep neural network and triplet loss in the area of representation learning. We investigated the notion of similarity and dissimilarity in pathology whole-slide images and compared different setups from unsupervised and semi-supervised to supervised learning in our experiments. Additionally, different approaches were tested, applying few-shot learning on two publicly available pathology image datasets. We achieved high accuracy and generalization when the learned representations were applied to two different pathology datasets.
 

 

Adaptation Through Learning: Using Machine Learning to Improve Forest Wildfire Management

June 17, 2020
https://www.re-work.co/events/webinar-ai-for-crisis-prediction-2020/schedule
 

In this talk I will provide a window into this situation by looking at forest wildfire management as a case study of a rich domain where some work has been done but huge opportunities remain. Existing forest wildfire spread models are complex manual constructions that are struggling to adapt to changing climate as well as changing attitudes towards forests.

Deep Learning learning algorithms are being...

Read more about Adaptation Through Learning: Using Machine Learning to Improve Forest Wildfire Management

Course News (ECE 657A W20)

  • Dec 21, 2019 - Course Registration - For those you could not register and have emailed, I have your contact info and situation. Course registration is closed on Quest, from now on you will need a permission number from the ECE office. No additional spaces will be added to the course since the room is full. If you still hope to take the course then be sure to do the following 
    • For the first two or three classes, come to class
    • Be sure you have sent Prof. Crowley an email with the following...
Read more about Course News (ECE 657A W20)
Compact Representation of a Multi-dimensional Combustion Manifold Using Deep Neural Networks, at European Conference on Machine Learning (ECML 2019), Wurzburg, Germany, Thursday, September 19, 2019:

The computational challenges in turbulent combustion simulations stem from the physical complexities and multi-scale nature of the problem which make it intractable to compute scale-resolving simulations. For most engineering applications, the large scale separation between the flame (typically sub-millimeter scale) and the characteristic turbulent flow (typically centimeter or meter scale) allows us to evoke simplifying assumptions–such as done for the flamelet model–to pre-compute all the chemical reactions and map them to a low-order manifold. The resulting manifold is then tabulated...

Read more about Compact Representation of a Multi-dimensional Combustion Manifold Using Deep Neural Networks

Pages