Waterloo researchers work with Indigenous partners to determine how safe the fish in their communities are to eat

Monday, January 28, 2019

James Bay Boat FishingFood security is an urgent and growing concern for Indigenous populations in Canada. Environmental change in aquatic ecosystems can impact the health of fish and the communities that rely on those fish in many ways. Some of those ways can involve exposure to contaminants like mercury. Working with the Fort Albany First Nation, a subarctic community in northern Ontario, University of Waterloo researchers will help answer one of the most critical questions from Indigenous people in northern Ontario: How safe are fish to eat? This project is one of six new co-led Indigenous projects that are part of the Global Water Futures program, transforming the way communities, governments and industries in Canada prepare for and manage increasing water-related threats.

“Mercury is of particular concern in aquatic ecosystems as elevated methylmercury concentrations have been documented in several fish species such as Walleye, Northern Pike, and Lake Trout which are regularly harvested across Canada,” said lead researcher Brian Laird, Professor and Water Institute member in Waterloo’s School of Public Health and Health Systems. “Consumption of fish often represents the largest source of mercury to humans, and prolonged exposure to mercury can cause permanent adverse effects to the neurological, immune, cardiovascular, and reproductive systems; the developing fetus and children are particularly vulnerable.”

In partnership with Fort Albany First Nation, Laird is working alongside Kelly Skinner (School of Public Health and Health Systems), Heidi Swanson (Department of Biology), and Virginia Sutherland (Senior Environmental Coordinator, Mushkegowuk Tribal Council) to study the health concerns and risk perceptions among Indigenous community members as well as the environmental determinants of mercury and nutrients in wild-harvested fish. They will be exploring the balance between contaminant risks and nutrient benefits in traditional foods as well as the links between contaminant levels in the environment, human behaviour patterns, and human exposure, and the impact on food security.

“To understand the long-term sustainability of wild-harvested fish as a healthy food resource in the face of climate change, co-located environmental, human behaviour, and food security data are crucial,” said Laird. “Through this process, we, together with our partners, will develop a model that predicts how effects of climate-induced change in Canadian lakes will affect fish health, human health, and food security for Indigenous peoples.”

About Global Water Futures: Global Water Futures is a seven-year, University of Saskatchewan-led research program established within the Global Institute for Water Security in 2016 and funded in part by a $77.8-million grant from the Canada First Research Excellence Fund. The research goal is to transform the way communities, governments and industries in Canada and other cold regions of the world prepare for and manage increasing water-related threats.

Global Water Futures is the world's largest university-led freshwater research program. The program is developed and funded in part by three key partners--the University of Waterloo, McMaster University, and Wilfrid Laurier University—and includes hundreds of faculty, researchers and support staff, hundreds of partners, and 15 Canadian universities.

  1. 2020 (30)
    1. March (11)
    2. February (11)
    3. January (8)
  2. 2019 (108)
    1. December (5)
    2. November (9)
    3. October (10)
    4. September (7)
    5. August (6)
    6. July (12)
    7. June (6)
    8. May (14)
    9. April (16)
    10. March (10)
    11. February (3)
    12. January (10)
  3. 2018 (101)
    1. December (3)
    2. November (12)
    3. October (10)
    4. September (7)
    5. August (6)
    6. July (6)
    7. June (12)
    8. May (10)
    9. April (7)
    10. March (9)
    11. February (9)
    12. January (10)
  4. 2017 (79)
  5. 2016 (37)
  6. 2015 (30)
  7. 2014 (21)
  8. 2013 (23)
  9. 2012 (33)