News

Filter by:

Limit to news where the title matches:
Limit to items where the date of the news item:
Date range
Limit to news items tagged with one or more of:
Monday, April 17, 2023

The Can-Peat Kickoff

By Nancy Goucher

Can-Peat: Peatlands as nature-based climate solutions got down to work at its first annual workshop held in Waterloo, ON at the end of January 2023. The meeting brought together 36 researchers, NGOs, industry, government and Indigenous communities from across Canada to discuss plans for meeting their ambitious goals which include creating a Canadian peatland network, developing a database to house peatland carbon data, advancing peatland carbon models, and identifying mechanisms for implementing peatland nature-based solutions.

The Can-Peat newsletter will be published four times a year. Articles will focus on research updates, upcoming events, and research team profiles.

We also hope to include features and updates from our partners, collaborators, and the broader Canadian peatland community so if you have an idea for article or have a great photo, please get in touch at canpeat@uwaterloo.ca!

Peatlands are globally significant carbon stores, yet vegetation phenology at fine spatial scales remains an understudied component of peatland functioning. This limits our understanding of how these ecosystems operate and respond to environmental change.

The PeatPic Project is an international effort designed to address this gap by collecting and analysing plot-scale digital photographs from peatlands across multiple climate zones. 

Monday, July 28, 2025

Introducing PeatRestore

Teaser blurb: The PeatRestore project aims to bring together peatland professionals from academic, government, and NGO spaces to collaborate on products that catalyze peatland restoration by co-developing practical and timely tools and guidance.

Canadian peatlands are one of Earth’s most important natural carbon sinks, covering more than 12% of Canada's land area and containing an estimated ~25% of the world's peatland carbon reservoir (Hugelius et al., 2020). These ecosystems are particularly dominant in the Hudson Bay Lowlands but also span large swaths of the arctic, sub-arctic, boreal plains and maritime Canada.

Human activities, like resource extraction, inevitably overlap with peatland areas. While only an estimated 2% of Canadian peatlands have been disturbed to date, ongoing human development will continue to impact new areas. These industrial activities disrupt the natural ability of peatlands to sequester atmospheric carbon dioxide (CO2) and store it as soil carbon. Depending on the disturbance type and how it changes the normal conditions present in that peatland, impacted areas may also release previously stored soil carbon as CO2 or methane (CH4). These changes to the usual greenhouse gas (GHG) exchange have significant global implications for climate regulation, so ecological restoration or reclamation is necessary for disturbed areas to regain their normal GHG functions.

Peatlands are the most common type of wetlands, consisting of thick soil layers of partially decomposed organic matter. These ecosystems cover 13 per cent of Canada’s land area, which corresponds to 27 per cent of the world’s peatlands. They provide essential benefits like clean water and food, flood protection, and habitat for a myriad of unique species. Peatlands are also one of the planet’s most effective carbon storage systems, holding about 60 per cent of Canada’s organic soil carbon. More details about Canadian peatlands can be found in the NRCAN database.

Even in the quiet of winter, microorganisms are hard at work in peatlands, cycling nutrients such as carbon. As a result, during winter, peatlands tend to release carbon dioxide (CO2) through microbial respiration because the plants that absorb CO2 are dormant. In contrast, plants take in CO2, via photosynthesis, during the growing season (GS). These seasonal dynamics generally balance out, with peatlands acting as net CO2 sinks over the course of the year. In Canada, however, winter temperatures are rising faster than other seasons. Warmer winters result in shorter cold periods and longer GSs. While a longer GS may increase the amount of CO2 peatlands absorb, the warmer conditions could also boost microbial activity, potentially offsetting the extra CO2 absorbed by plants. This shift in seasonal dynamics could tip the balance and weaken the ability of peatlands to act as carbon sinks. Understanding these seasonal changes is crucial for predicting how peatlands will respond to a changing climate and provide insights into their potential role as nature-based solutions.