Waterloo engineers combine AI and wearable cameras in self-walking robotic exoskeletons

Monday, March 15, 2021

exoRobotics researchers are developing exoskeleton legs capable of thinking and making control decisions on their own using sophisticated artificial intelligence (AI) technology. The system combines computer vision and deep-learning AI to mimic how able-bodied people walk by seeing their surroundings and adjusting their movements.

“We’re giving robotic exoskeletons vision so they can control themselves,” said Brokoslaw Laschowski, an engineering PhD candidate who leads a University of Waterloo research project called “ExoNet”.

Exoskeleton legs operated by motors already exist, but they must be manually controlled by users via smartphone applications or joysticks. “That can be inconvenient and cognitively demanding,” said Laschowski, also a student member of the Waterloo Artificial Intelligence Institute (Waterloo.ai). “Every time you want to perform a new locomotor activity, you have to stop, take out your smartphone and select the desired mode.”

To address that limitation, the researchers fitted exoskeleton users with wearable cameras and are now optimizing AI computer software to process the video feed to accurately recognize stairs, doors and other features of the surrounding environment. The next phase of the ExoNet research project will involve sending instructions to the motors so that robotic exoskeletons can climb stairs, avoid obstacles or take other appropriate actions based on analysis of the user’s current movement and the upcoming terrain.

“Our control approach wouldn’t necessarily require human thought,” said Laschowski, who is supervised by engineering professor John McPhee, the Canada Research Chair in Biomechatronic System Dynamics. “Similar to autonomous cars that drive themselves, we’re designing autonomous exoskeletons that walk for themselves.”

The researchers are also working to improve the energy-efficiency of motors for robotic exoskeletons by using human motion to self-charge the batteries. The latest in a series of papers on the related projects, Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses with Energy Regeneration, appears in the journal IEEE Transactions on Medical Robotics and Bionics.

The research team also includes engineering professor Alexander Wong, the Canada Research Chair in Artificial Intelligence and Medical Imaging, and William McNally, also an engineering PhD candidate and a student member of Waterloo.ai. For more information, see their latest paper "Computer Vision and Deep Learning for Environment-Adaptive Control of Robotic Lower-Limb Exoskeletons". 

  1. 2021 (3)
    1. April (1)
    2. March (2)
  2. 2020 (3)
    1. December (1)
    2. August (1)
    3. February (1)
  3. 2019 (8)
    1. December (1)
    2. October (1)
    3. August (2)
    4. June (1)
    5. May (2)
    6. February (1)
  4. 2018 (9)
  5. 2017 (1)
  6. 2016 (6)
  7. 2015 (5)