Machine Learning and Computer Vision

Research Description 

We are developing machine learning algorithms to automatically track, model, and control multibody dynamic systems. Our efficient algorithms are deployed on mobile devices and control hardware units. Applications include markerless tracking for human movement biomechanics, control of autonomous vehicles, automotive powertrain models, and environment recognition systems for robotic lower-limb exoskeletons and prostheses.

Student Researchers 

William McNally
Yuan Lin
Brock Laschowski 
Arash Hashemi
Chris Shum 

Keywords and Themes 

• Deep Learning and Computer Vision
• Convolutional Neural Networks
• Reinforcement Learning
• Human Movement Biomechanics
• Autonomous Vehicles
• Environment Recognition Systems

Golf_DL

Related Publications 

• McNally W, Wong A, and McPhee J. (2019). STAR-Net: Action Recognition using Spatio-Temporal Activation Reprojection. arXiv:1902.10024.
• McNally W, Vats K, Pinto T, Dulhanty C, McPhee J, and Wong A. (2019). GolfDB: A Video Database for Golf Swing Sequencing. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). arXiv:1903.06528.