Publications

Search
[ Author(Asc)] Title Type Year
L
Layton, A. T. , Pannabecker, T. L. , Dantzler, W. H. , & Layton, H. E. . (2010). Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 298, F973–F987. American Physiological Society Bethesda, MD.
Layton, A. T. , Toyama, Y. , Yang, G. - Q. , Edwards, G. S. , Kiehart, D. P. , & Venakides, S. . (2009). of dorsal closure Drosophila morphogenesis: tissue force laws and the modeling This article describes a second generation mathematical model to investigate the forces that account for the dynamics of dorsal closure, a stage of Drosophila development which. HFSP Journal, 441.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2009). Waveform distortion in TGF-mediated limit-cycle oscillations: Effects of TAL flow. The FASEB Journal, 23, 804–14. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2009). On the efficiency of spectral deferred correction methods for time-dependent partial differential equations. Applied numerical mathematics, 59, 1629–1643. North-Holland.
Layton, A. T. . (2009). Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces. Computers & fluids, 38, 266–272. Pergamon.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2009). Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of mathematical biology, 71, 515–555. Springer-Verlag.
Layton, A. T. , Toyama, Y. , Yang, G. - Q. , Edwards, G. S. , Kiehart, D. P. , & Venakides, S. . (2009). Drosophila morphogenesis: tissue force laws and the modeling of dorsal closure. HFSP journal, 3, 441–460. Taylor & Francis.
Layton, A. T. , Layton, H. E. , Dantzler, W. H. , & Pannabecker, T. L. . (2009). The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology, 24, 250–256. American Physiological Society.
Layton, H. E. , Moore, L. C. , & Layton, A. T. . (2008). Tubuloglomerular feedback signal transduction in a model of a compliant thick ascending limb. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2008). An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary. Computer methods in applied mechanics and engineering, 197, 2147–2155. North-Holland.
Layton, A. T. . (2008). On the choice of correctors for semi-implicit Picard deferred correction methods. Applied Numerical Mathematics, 58, 845–858. Elsevier.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. The Federation of American Societies for Experimental Biology.
Layton, A. T. . (2007). Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bulletin of mathematical biology, 69, 887–929. Springer-Verlag.
Layton, A. , & Minion, M. . (2007). Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods. Communications in Applied Mathematics and Computational Science, 2, 1–34. Mathematical Sciences Publishers.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2006). Dynamics in coupled nephrons may contribute to irregular flow oscillations in spontaneously hypertensive rats. Federation of American Societies for Experimental Biology.
Layton, A. T. , Christara, C. C. , & Jackson, K. R. . (2006). Quadratic spline methods for the shallow water equations on the sphere: Galerkin. Mathematics and Computers in Simulation, 71, 175–186. Elsevier.
Layton, A. T. , Christara, C. C. , & Jackson, K. R. . (2006). Quadratic spline methods for the shallow water equations on the sphere: Collocation. Mathematics and Computers in Simulation, 71, 187–205. Elsevier.
Layton, A. T. , Christara, C. C. , & Jackson, K. R. . (2006). Quadratic spline Galerkin method for the shallow water equations on the sphere. Math. Comput. Simulat, 71, 175–186.
Layton, A. T. . (2006). An explicit jump method for the two-fluid stokes equations with an immersed elastic boundary. Elsevier Science.
Layton, A. T. . (2006). Modeling water transport across elastic boundaries using an explicit jump method. SIAM Journal on Scientific Computing, 28, 2189–2207. Society for Industrial and Applied Mathematics.

Pages