Publications

Search
[ Author(Asc)] Title Type Year
O
Orr, V. , Zhong, L. Y. , Moo-Young, M. , & Chou, C. P. . (2013). Recent advances in bioprocessing application of membrane chromatography. Biotechnology Advances, 31, 450-465. 2013_recent_advances_in_bioprocessing_application_of_membrane_chromatography.pdf
Orr, V. , Scharer, J. , Moo-Young, M. , Honeyman, C. H. , Fenner, D. , Crossley, L. , Suen, S. Y. , et al. (2012). Simultaneous clarification of Escherichia coli culture and purification of extracellularly produced penicillin G acylase using tangential flow filtration and anion-exchange membrane chromatography (TFF-AEMC). Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 900, 71-78.
Orr, V. , Scharer, J. , Moo-Young, M. , Honeyman, C. H. , Fenner, D. , Crossley, L. , Suen, S. Y. , et al. (2012). Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. Journal of Biotechnology, 161, 19-26.
N
Narayanan, N. , Khan, M. , & Chou, C. P. . (2011). Enhancing Functional Expression of Heterologous Burkholderia Lipase in Escherichia coli. Molecular Biotechnology, 47, 130-143.
Narayanan, N. , Khan, M. , & Chou, C. P. . (2010). Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. Journal of Industrial Microbiology & Biotechnology, 37, 349-361.
Narayanan, N. , & Chou, C. P. . (2009). Alleviation of Proteolytic Sensitivity To Enhance Recombinant Lipase Production in Escherichia coli. Applied and Environmental Microbiology, 75, 5424-5427. 2009_alleviation_of_proteolytic_sensitivity_to_enhance_recombinant_lipase_production_in_escherichia_coli.pdf
Narayanan, N. , & Chou, C. P. . (2008). Physiological improvement to enhance Escherichia coli cell-surface display via reducing extracytoplasmic stress. Biotechnology Progress, 24, 293-301.
Narayanan, N. , & Chou, C. P. . (2008). Periplasmic chaperone FkpA reduces extracytoplasmic stress response and improves cell-surface display on Escherichia coli. Enzyme and Microbial Technology, 42, 506-513.
Narayanan, N. , Follonier, S. , & Chou, C. P. . (2008). In vivo monitoring and alleviation of extracytoplasmic stress to recombinant protein overproduction in the periplasm of Escherichia coli. Biochemical Engineering Journal, 42, 13-19.
Narayanan, N. , Xu, Y. L. , & Chou, C. P. . (2006). High-level gene expression for recombinant penicillin acylase production using the araB promoter system in Escherichia coli. Biotechnology Progress, 22, 1518-1523.
Narayanan, N. , Hsieh, M. Y. , Xu, Y. L. , & Chou, C. P. . (2006). Arabinose-induction of lac-derived promoter systems for penicillin acylase production in Escherichia coli. Biotechnology Progress, 22, 617-625.
M
Miscevic, D. , Mao, J. - Y. , Mozell, B. , Srirangan, K. , Moo-Young, M. , & Chou, C. P. . (2021). Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Applied Microbiology and Biotechnology, 105, 1435-1446 . 2021_bio-based_production_of_poly3-hydroxybutyrate-co-3-hydroxyvalerate_with_modulated_monomeric_fraction_in_escherichia_coli.pdf
Miscevic, D. , Mao, J. - Y. , Abedi, D. , Moo-Young, M. , & Chou, C. P. . (2021). Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnology and Bioengineering, 118, 30-42. 2021_strain_engineering_for_high-level_5-aminolevulinic_acid_production_in_escherichia_coli.pdf
Miscevic, D. , Mao, J. - Y. , Abedi, D. , Huang, C. - C. , Moo-Young, M. , & Chou, C. P. . (2020). Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Applied Microbiology and Biotechnology, 104, 5259-5272. 2020_integrated_strain_engineering_and_bioprocessing_strategies_for_high-level_bio-based_production_of_3-hydroxyvalerate_in_escherichia_coli.pdf
Miscevic, D. , Mao, J. - Y. , Moo-Young, M. , & Chou, C. P. . (2020). High-level heterologous production of propionate in engineered Escherichia coli. Biotechnology and Bioengineering, 117, 1304-1315 . 2020_high-level_heterologous_production_of_propionate_in_engineered_escherichia_coli.pdf
Miscevic, D. , Srirangan, K. , Kilpatrick, S. , Chung, D. A. , Moo-Young, M. , & Chou, C. P. . (2020). Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli. Metabolic Engineering, 61, 141-151. 2020_heterologous_production_of_3-hydroxyvalerate_in_engineered_escherichia_coli_.pdf
Miscevic, D. , Srirangan, K. , Abedi, D. , Moo-Young, M. , & Chou, C. P. . (2019). Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli. Applied Microbiology and Biotechnology, 103, 5215-5230. 2019_production_of_cellulosic_butyrate_and_3-hydroxybutyrate_in_engineered_escherichia_coli.pdf
Mao, J. - Y. , Miscevic, D. , Unnikrishnana, B. , Chua, H. - W. , Chou, C. P. , Chang, L. , Lin, H. - J. , et al. (2022). Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. Journal of Colloid and Interface Science, 608, 1813-1826. 2022_carbon_nanogels_exert_multipronged_attack_on_resistant_bacteria_and_strongly_constrain_resistance_evolution.pdf

Pages