Publications

Search
Author Title Type [ Year(Desc)]
2002
Hare, K. G. . (2002). Perfect <k,r>-Latin squares. Ars Combin., 63, 311–318.
Hare, K. G. . (2002). Pisot numbers and the Spectra of Real numbers. May, Simon Fraser University. phd.pdf
Borwein, P. , & Hare, K. G. . (2002). Some computations on the spectra of Pisot and Salem numbers. Math. Comp., 71(238), 767–780. doi:10.1090/S0025-5718-01-01336-9
2003
Hare, K. G. , & Yazdani, S. . (2003). Further results on derived sequences. J. Integer Seq., 6(2), Article 03.2.7, 7. Retrieved from https://cs.uwaterloo.ca/journals/JIS/VOL6/Hare/hare3.pdf
Borwein, P. , & Hare, K. G. . (2003). General forms for minimal spectral values for a class of quadratic Pisot numbers. Bull. London Math. Soc., 35(1), 47–54. doi:10.1112/S0024609302001455
Borwein, P. , & Hare, K. G. . (2003). Non-trivial quadratic approximations to zero of a family of cubic Pisot numbers. Trans. Amer. Math. Soc., 355(12), 4767–4779. doi:10.1090/S0002-9947-03-03333-6
2004
D’Andrea, C. , & Hare, K. G. . (2004). On the height of the Sylvester resultant. Experiment. Math., 13(3), 331–341. Retrieved from http://projecteuclid.org/euclid.em/1103749841
Borwein, P. , Hare, K. G. , & Mossinghoff, M. J. . (2004). The Mahler measure of polynomials with odd coefficients. Bull. London Math. Soc., 36(3), 332–338. doi:10.1112/S002460930300287X
Hare, K. G. . (2004). The structure of the spectra of Pisot numbers. J. Number Theory, 105(2), 262–274. doi:10.1016/j.jnt.2003.10.001 p12_gaps.gz
2005
Bell, J. P. , & Hare, K. G. . (2005). A classification of (some) Pisot-cyclotomic numbers. J. Number Theory, 115(2), 215–229. doi:10.1016/j.jnt.2004.11.009
Hare, K. G. . (2005). More on the total number of prime factors of an odd perfect number. Math. Comp., 74(250), 1003–1008 (electronic). doi:10.1090/S0025-5718-04-01683-7
2006
Garth, D. , & Hare, K. G. . (2006). Comments on the spectra of Pisot numbers. J. Number Theory, 121(2), 187–203. doi:10.1016/j.jnt.2006.02.003
Hare, K. G. , & Smyth, C. J. . (2006). The monic integer transfinite diameter. Math. Comp., 75(256), 1997–2019 (electronic). doi:10.1090/S0025-5718-06-01843-6 p22_table.pdf
2007
Hare, K. G. . (2007). Beta-expansions of Pisot and Salem numbers. In Computer algebra 2006 (pp. 67–84). World Sci. Publ., Hackensack, NJ. doi:10.1142/9789812778857_0005 p24_beta.tar.gz
Hare, K. G. . (2007). New techniques for bounds on the total number of prime factors of an odd perfect number. Math. Comp., 76(260), 2241–2248 (electronic). doi:10.1090/S0025-5718-07-02033-9 p20_opn.tar.gz
Allouche, J. - P. , Frougny, C. , & Hare, K. G. . (2007). On univoque Pisot numbers. Math. Comp., 76(259), 1639–1660 (electronic). doi:10.1090/S0025-5718-07-01961-8
2008
Hare, K. G. , & Tweedle, D. . (2008). Beta-expansions for infinite families of Pisot and Salem numbers. J. Number Theory, 128(9), 2756–2765. doi:10.1016/j.jnt.2008.02.010
Hare, K. G. , & Smyth, C. J. . (2008). Corrigendum to: ‘‘The monic integer transfinite diameter’’ [Math. Comp. 75 (2006), no. 256, 1997–2019; MR2240646]. Math. Comp., 77(263), 1869. doi:10.1090/S0025-5718-07-02077-7
2009
Geum, Y. H. , & Hare, K. G. . (2009). Groebner basis, resultants and the generalized Mandelbrot set. Chaos Solitons Fractals, 42(2), 1016–1023. doi:10.1016/j.chaos.2009.02.039

Pages