Publications

2024

Queiroz, R., Sharma, D., Caldas, R., Czarnecki, K., García, S., Berger, T., Pelliccione, P., "A Driver-Vehicle Model for ADS Scenario-Based Testing" in IEEE Transactions on Intelligent Transportation Systems. 03/2024. 2024. Available in IEEEXplore

Wang, J., Pant, Y. V., Zhao, L., Antkiewicz M., Czarnecki,K., "Enhancing Safety in Mixed Traffic: Learning-Based Modeling and Efficient Control of Autonomous and Human-Driven Vehicles," in IEEE Transactions on Intelligent Transportation Systems. 04/2024. 2024. Available in IEEEXplore

Yacoub, M., Antkiewicz, M., Czarnecki, K., & McPhee, J., "Gain-scheduled model predictive controller for vehicle-following trajectory generation for autonomous vehicles," Vehicle System Dynamics, 26. https://doi.org/10.1080/00423114.2024.2373140

Theses

Stewart, Connor Raymond, "Traffic Rule Checking and Validation", MMath, University of Waterloo, 2024.

2023

Lee, J., Sedwards, S., Czarnecki, K., Uniformly Constrained Reinforcement LearningAccepted for Publication in Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS): Special Issue on Multi-Objective Decision Making (MODeM), 2023.

Theses

Mannes, Christopher Gus, "Sparse2SOAP: Domain Adaptation for LiDAR-Based 3D Object Detection", MMath, University of Waterloo, 2023.

Bhattacharyya, Prarthana, "Perception and Prediction in Multi-Agent Urban Traffic Scenarios for Autonomous Driving", PhD, University of Waterloo, 2023.

Rowe, Luke, "FJMP: Factorized Joint Multi-Agent Motion Prediction". MMath, University of Waterloo, 2023.
Thesis presentation video

Therien, Benjamin, "Towards Object Re-identification from Point Clouds for 3D MOT", MMath, University of Waterloo, 2023.

2022

Kahn, M., Sarkar, A., Czarnecki, K., I Know You Can't See Me: Dynamic Occlusion-Aware Safety Validation of Strategic Planners for Autonomous Vehicles Using Hypergames.I Know You Can’t See Me: Dynamic Occlusion-Aware Safety Validation of Strategic Planners for Autonomous Vehicles Using Hypergames. 2022. Retrieved from https://arxiv.org/abs/2109.09807

Sarkar, A., Larson, K., Czarnecki, K., Generalized dynamic cognitive hierarchy models for strategic driving behavior.Generalized Dynamic Cognitive Hierarchy Models for Strategic Driving Behavior. 2022. Retrieved from https://arxiv.org/abs/2109.09861

Bouchard, F., Sedwards, S., Czarnecki, K., A Rule-Based Behaviour Planner for Autonomous Driving. Berlin, Springer, 2022.

Larter, S., Queiroz, R., Sedwards, S., Sarkar, A., Czarnecki, K., A Hierarchical Pedestrian Behavior Model to Generate Realistic Human Behavior in Traffic Simulation. Aachen, Germany: IEEE, 2022. https://doi.org/10.1109/IV51971.2022.9827035

Theses

Rodrigo Queiroz, Scenario Modeling and Execution for Simulation Testing of Automated-Driving Systems. PhD, University of Waterloo, 2022.

Scott Larter, A Hierarchical Pedestrian Behaviour Model to Reproduce Realistic Human Behaviour in a Traffic Environment. MMath. 2022. Retrieved from http://hdl.handle.net/10012/18094

Sunsheng Gu, XC: Exploring Quantitative Use Cases for Explanations in 3D Object Detection.  MSc. 2022. Retrieved from http://hdl.handle.net/10012/17899

Matthew Pitropov, LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection. MSc. 2022. Retrieved from http://hdl.handle.net/10012/18062

Atrisha Sarkar,  Empirical Game Theoretic Models for Autonomous Driving: Methods and Applications. MMath. 2022. Retrieved from http://hdl.handle.net/10012/18751

Van Duong Nguyen, Out-of-Distribution Detection for LiDAR-based 3D Object Detection. MSc. 2022. Retrieved from http://hdl.handle.net/10012/17902

2021

Sarkar, A., Czarnecki, K., Solution Concepts in Hierarchical Games Under Bounded Rationality With Applications to Autonomous Driving.. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16715, 2021.

Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I., Falsification of Hybrid Systems Using Adaptive Probabilistic SearchACM Transactions on Modeling and Computer Simulation (TOMACS)31, 1-22. https://doi.org/10.1145/3459605, 2021.

Sarkar, A., Larson, K., Czarnecki, K., A taxonomy of strategic human interactions in traffic conflictsA Taxonomy of Strategic Human Interactions in Traffic Conflicts. Presented at the. Retrieved from https://arxiv.org/abs/2109.13367, 2021.

Abdelzad, V., Lee, J., Sedwards, S., Soltani, S., Czarnecki, K., Non-divergent Imitation for Verification of Complex Learned Controllers. Shenzhen, China (virtual): IEEE. https://doi.org/10.1109/IJCNN52387.2021.9533410, 2021.

Balakrishnan, A., Lee, J., Gaurav, A., Czarnecki, K., Sedwards, S., Transfer Reinforcement Learning for Autonomous Driving: From WiseMove to WiseSimACM Transactions on Modeling and Computer Simulation31, Article No. 15, pp 1~26. https://doi.org/10.1145/3449356, 2021.

Lee, J., Sutton, R. S., Policy iterations for reinforcement learning problems in continuous time and space - Fundamental theory and methodsAutomatica126, 109421, 15 pages. https://doi.org/10.1016/j.automatica.2020.109421, 2021.

Lee, S., Lee, J., Hasuo, I., Predictive PER: Balancing Priority and Diversity Towards Stable Deep Reinforcement Learning. Shenzhen, China (virtual): IEEE. https://doi.org/10.1109/IJCNN52387.2021.9534243, 2021.

Lee, J., Sedwards, S., Czarnecki, K., Recursive Constraints to Prevent Instability in Constrained Reinforcement LearningRecursive Constraints to Prevent Instability in Constrained Reinforcement Learning. Presented at the. Online at http://modem2021.cs.nuigalway.ie/. Retrieved from https://arxiv.org/abs/2201.07958, 2021.

Theses

Maximilian Kahn, Dynamic-Occlusion-Aware Risk Identification for Autonomous Vehicles Using Hypergames. Retrieved from http://hdl.handle.net/10012/17774, 2021.

2020

Lee, S, Lee, J, Hasuo, I., Predictive PER: Balancing Priority and Diversity towards Stable Deep Reinforcement LearningPredictive PER: Balancing Priority and Diversity towards Stable Deep Reinforcement Learning. Presented at the. Retrieved from https://sites.google.com/view/deep-rl-workshop-neurips2020/home, 2020.

Budde, C, D'Argenio, P, Hartmanns, A, Sedwards, S., An Efficient Statistical Model Checker for Nondeterminism and Rare EventsInternational Journal on Software Tools For Technology TransferSpecial Issue TACAS 2018, 2020.

Salay, R, Czarnecki, K, Alvarez, I, Elli, M. S., Sedwards, S, Weast, J., PURSS: Towards Perceptual Uncertainty Aware Responsibility Sensitive Safety with MLPURSS: Towards Perceptual Uncertainty Aware Responsibility Sensitive Safety With ML. Presented at the. New York: CEUR, 2020.

Jhunjhunwala, A, Lee, J, Sedwards, S, Abdelzad, V, Czarnecki, K., Improved Policy Extraction via Online Q-Value DistillationImproved Policy Extraction via Online Q-Value Distillation. Presented at the. Glasgow: IEEE, 2020.

Chen, H, Cohen, R, Dautenhahn, K, Law, E, Czarnecki, K., Autonomous Vehicle Visual Signals for Pedestrians: Experiments and Design RecommendationsAutonomous Vehicle Visual Signals for Pedestrians: Experiments and Design Recommendations. Presented at the. Retrieved from https://arxiv.org/abs/2010.05115, 2020.

Gaurav, A, Vernekar, S, Lee, J, Sedwards, S, Abdelzad, V, Czarnecki, K., Simple Continual Learning Strategies for Safer ClassifersSimple Continual Learning Strategies for Safer Classifers. Presented at the. CEUR. Retrieved from http://ceur-ws.org/Vol-2560/paper6.pdf, 2020.

Dillen, N, Ilievski, M, Law, E, Nacke, L. E., Czarnecki, K, Schneider, O., Keep Calm and Ride Along: Passenger Comfort and Anxiety as Physiological Responses to Autonomous Driving StylesKeep Calm and Ride Along: Passenger Comfort and Anxiety As Physiological Responses to Autonomous Driving Styles. Presented at the. ACM. https://doi.org/10.1145/3313831.3376247, 2020.

Antkiewicz, M, Kahn, M, Ala, M, Czarnecki, K, Wells, P, Acharya, A, Beiker, S., Modes of Automated Driving System Scenario Testing: Experience Report and RecommendationsSAE Int. J. Adv. & Curr. Prac. In Mobility2, 2248-2266. https://doi.org/10.4271/2020-01-1204, 2020.

Theses

Aravind Balakrishnan. Closing the Modelling Gap: Transfer Learning from a Low-Fidelity Simulator for Autonomous Driving. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15570, 2020.

Pavel Valov. Transferring Pareto Frontiers across Heterogeneous Hardware Environments. Waterloo. Retrieved from http://hdl.handle.net/10012/16295, 2020.

Chen, W. T. Accelerating the Training of Convolutional Neural Networks for Image Segmentation with Deep Active Learning. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15537, 2020.

Marko Ilievski, WiseBench: A Motion Planning Benchmarking Framework for Autonomous Vehicles. Waterloo. Retrieved from http://hdl.handle.net/10012/16422, 2020.

Frederic Bouchard, Expert System and a Rule Set Development Method for Urban Behaviour Planning. Retrieved from http://hdl.handle.net/10012/15864, 2020.

Taylor Denouden, An Application of Out-of-Distribution Detection for Two-Stage Object Detection Networks. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15646, 2020.

Ashish Gaurav, Safety-Oriented Stability Biases for Continual Learning. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15579, 2020.

Chen, H  Autonomous Vehicles with Visual Signals for Pedestrians: Experiments and Design Recommendations. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15534, 2020.

Sachin Vernekar, Training Reject-Classifiers for Out-of-distribution Detection via Explicit Boundary Sample Generation. Waterloo. Retrieved from http://hdl.handle.net/10012/15582, 2020.

2019

Sarkar, A., Czarnecki, K. A behavior driven approach for sampling rare event situations for autonomous vehiclesA Behavior Driven Approach for Sampling Rare Event Situations for Autonomous Vehicles. Presented at the. Retrieved from https://ieeexplore.ieee.org/abstract/document/8967715, 2019.

Khan, S., Phan, B. T., Salay, R., Czarnecki, K., ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies Of Semantic Segmentation NetworksProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies Of Semantic Segmentation Networks. Presented at the. Long Beach, California, USA: IEEE. Retrieved from https://bit.ly/2G3MA1P, 2019.

Ilievski, M., Sedwards, S., Gaurav, A., Balakrishnan, A., Sarkar, A., Lee, J., Bouchard, F. ed\ eric, De Iaco, R., Czarnecki, K., Design Space of Behaviour Planning for Autonomous Driving. Waterloo. Retrieved from https://arxiv.org/abs/1908.07931, 2019.

Li, C., Czarnecki, K., Urban Driving with Multi-Objective Deep Reinforcement LearningUrban Driving With Multi-Objective Deep Reinforcement Learning. Presented at the. Montreal: IFAAMAS, 2019.

Li, C., Czarnecki, K., Rethinking Expected Cumulative Reward Formalism of Reinforcement Learning: A Micro-Objective PerspectiveRethinking Expected Cumulative Reward Formalism of Reinforcement Learning: A Micro-Objective Perspective. Montreal, 2019.

Vernekar, S., Gaurav, A., Denouden, T., Phan, B. T., Abdelzad, V., Salay, R., Czarnecki, K., Analysis of Confident-Classifiers for Out-of-Distribution DetectionAnalysis of Confident-Classifiers for Out-of-Distribution Detection. Presented at the. Retrieved from https://drive.google.com/uc?export=download\&id=1AY0zFvQ_u1UmGcn0bHs1XCWX9QncaqvT, 2019.

Sarkar, A., Czarnecki, K., A behavior driven approach for sampling rare event situations for autonomous vehiclesA Behavior Driven Approach for Sampling Rare Event Situations for Autonomous Vehicles. Presented at the. Retrieved from https://ieeexplore.ieee.org/abstract/document/8967715, 2019.

Khan, S., Phan, B. T., Salay, R., Czarnecki, K., ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies Of Semantic Segmentation NetworksProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies Of Semantic Segmentation Networks. Presented at the. Long Beach, California, USA: IEEE. Retrieved from https://bit.ly/2G3MA1P, 2019.

Ilievski, M., Sedwards, S., Gaurav, A., Balakrishnan, A., Sarkar, A., Lee, J., Bouchard, F., De Iaco, R., Czarnecki, K., Design Space of Behaviour Planning for Autonomous Driving. Waterloo. Retrieved from https://arxiv.org/abs/1908.07931, 2019.

Li, C., Czarnecki, K., Urban Driving with Multi-Objective Deep Reinforcement LearningUrban Driving With Multi-Objective Deep Reinforcement Learning. Presented at the. Montreal: IFAAMAS, 2019.

Babaee, R., Ganesh, V., Sedwards, S., Accelerated Learning of Predictive Runtime Monitors for Rare Failure. Porto, Portugal: Springer, 2019.

De Iaco, R., Smith, S. L., Czarnecki, K., Learning a Lattice Planner Control Set for Autonomous VehiclesLearning a Lattice Planner Control Set for Autonomous Vehicles. Presented at the. Paris, France. https://doi.org/10.1109/IVS.2019.8813797, 2019.

Phan, B. T., Khan, S., Salay, R., Czarnecki, K., Bayesian Uncertainty Quantification with Synthetic DataBayesian Uncertainty Quantification With Synthetic Data. Presented at the. Turku, Finland: SAFECOMP. Retrieved from https://www.waise.org/, 2019.

Vernekar, S., Gaurav, A., Denouden, T., Phan, B. T., Abdelzad, V., Salay, R., Czarnecki, K., Analysis of Confident-Classifiers for Out-of-Distribution DetectionAnalysis of Confident-Classifiers for Out-of-Distribution Detection. Presented at the. Retrieved from https://drive.google.com/uc?export=download\&id=1AY0zFvQ_u1UmGcn0bHs1XCWX9QncaqvT, 2019.

Theses

Angus, M., Towards Pixel-Level OOD Detection for Semantic Segmentation. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15004, 2019.

Edward Chao, Autonomous Driving: Mapping and Behavior Planning for Crosswalks. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15121, 2019.

Jiang Deng, MLOD: A multi-view 3D object detection based on robust feature fusion method. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15086, 2019.

Ryan De Iaco, Motion Planning and Safety for Autonomous Driving. Waterloo. Retrieved from http://hdl.handle.net/10012/15303, 2019.

Aman Jhunjhunwala, Policy Extraction via Online Q-Value Distillation. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/14963, 2019.

Braden Hurl, Local and Cooperative Autonomous Vehicle Perception from Synthetic Datasets. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15118, 2019. 

Samin Khan, Towards Synthetic Dataset Generation for Semantic Segmentation Networks. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/15128, 2019.

Li, C., Autonomous Driving: A Multi-Objective Deep Reinforcement Learning Approach. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/14697, 2019.

2018

Zhang, Z., Ernst, G., Hasuo, I., Sedwards, S., Time-Staging Enhancement of Hybrid System Falsification. Porto, Portugal: IEEE. Retrieved from https://ieeexplore.ieee.org/abstract/document/8429475, 2018.

D\textquoterightArgenio, P., Hartmanns, A., Sedwards, S., Lightweight Statistical Model Checking in Nondeterministic Continuous Time. Limassol, Cyprus: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-03421-4_22, 2018.

Phan, B. T., Salay, R., Czarnecki, K., Abdelzad, V., Denouden, T., Vernekar, S., Calibrating Uncertainties in Object Localization TaskCalibrating Uncertainties in Object Localization Task, 2018.

Czarnecki, K., Salay, R., Towards a Framework to Manage Perceptual Uncertainty for Safe Automated DrivingTowards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving. Presented at the. Västerr as, Sweden: Springer, 2018.

Juodisius, P., Sarkar, A., Mukkamala, R. R., Antkiewicz, M., Czarnecki, K., Wąsowski, A. W., Clafer: Lightweight Modeling of Structure and BehaviourThe Art, Science, and Engineering of Programming Journal3. https://doi.org/10.22152/programming-journal.org/2019/3/2, 2018.

Zhang, Z., Ernst, G., Sedwards, S., Arcani, P., Hasuo, I., Two-Layered Falsification of Hybrid Systems Guided by Monte Carlo Tree Search. IEEE TCAD. Torino, Italy: IEEE. Retrieved from https://ieeexplore.ieee.org/document/8418450, 2018.

Zayan, D., Sarkar, A., Antkiewicz, M., Maciel, R. S. P., Czarnecki, K., Example-driven modeling: on effects of using examples on structural model comprehension, what makes them useful, and how to create them. https://doi.org/10.1007/s10270-017-0652-3, 2018.

Budde, C., D\textquoterightArgenio, P., Hartmanns, A., Sedwards, S., A Statistical Model Checker for Nondeterminism and Rare Events. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-89963-3_20, 2018.

Given-Wilson, T., Legay, A., Sedwards, S., Zendra, O., Group abstraction for assisted navigation of social activities in intelligent environmentsSpringer Journal of Reliable Intelligent Environments4, 107-120. Retrieved from https://link.springer.com/article/10.1007/s40860-018-0058-1, 2018.

Colwell, I., Phan, B. T., Saleem, S., Salay, R., Czarnecki, K. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design DomainAn Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design Domain, 2018.

Angus, M., ElBalkini, M., Khan, S., Harakeh, A., Andrienko, O., Reading, C., Czarnecki, K., Waslander, S. Unlimited Road-scene Synthetic Annotation (URSA) DatasetUnlimited Road-Scene Synthetic Annotation (URSA) Dataset. Presented at the. Maui, Hawaii, USA: IEEE. Retrieved from https://arxiv.org/abs/1807.06056, 2018.

Passos, L., Queiroz, R., Mukelabai, M., Berger, T., Apel, S., Czarnecki, K., Padilla, J. A., A Study of Feature Scattering in the Linux KernelIEEE Transactions on Software Engineering, 2018.

D\textquoterightArgenio, P., Gerhold, M., Hartmanns, A., Sedwards, S. A Hierarchy of Scheduler Classes for Stochastic Automata. Thessaloniki, Greece: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-89366-2_21, 2018.

Kido, K., Sedwards, S., Hasuo, I. Bounding Errors Due to Switching Delays in Incrementally Stable Switched Systems. Oxford, United Kingdom: Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/S2405896318311583, 2018.

Theses

Colwell, I. (2018). Runtime Restriction of the Operational Design Domain: A Safety Concept for Automated Vehicles. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/13398, 2018.

Jimmy Hui Liang, Machine Learning for SAT Solvers. Waterloo, ON, Canada. Retrieved from http://hdl.handle.net/10012/14207, 2018.

Edward Zulkoski, Understanding and Enhancing CDCL-based SAT Solvers. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/13525, 2018.

Rachul Chandail, Vision Augmented State Estimation with Fault Tolerance. Waterloo. Retrieved from https://uwspace.uwaterloo.ca/handle/10012/13291, 2018.

2017

Sarkar, A., Czarnecki, K., Angus, M., Li, C., Waslander, S. Trajectory prediction of traffic agents at urban intersections through learned interactions.Trajectory Prediction of Traffic Agents at Urban Intersections through Learned Interactions. Presented at the. Retrieved from https://ieeexplore.ieee.org/document/8317731, 2017.

Larson, K., Peled, D., Sedwards, S. Memory-Efficient Tactics for Randomized LTL Model Checking. Heidelberg, Germany: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-72308-2_10, 2017.

Valov, P., Petkovich, J.-C., Guo, J., Fischmeister, S., Czarnecki, K. Transferring Performance Prediction Models Across Different Hardware PlatformsTransferring Performance Prediction Models Across Different Hardware Platforms. Presented at the. https://doi.org/10.1145/3030207.3030216, 2017.

Chauchan, M., Pellizzoni, R., Czarnecki, K. Modeling the Effects of AUTOSAR Overheads on Application Timing and SchedulabilityModeling the Effects of AUTOSAR Overheads on Application Timing and Schedulability. Presented at the. Retrieved from https://dac.com/2017/accepted-papers, 2017.

Guo, J., Blais, E., Czarnecki, K., van Beek, P. A Worst-Case Analysis of Constraint-Based Algorithms for Exact Multi-objective Combinatorial OptimizationA Worst-Case Analysis of Constraint-Based Algorithms for Exact Multi-Objective Combinatorial Optimization. Presented at the. https://doi.org/10.1007/978-3-319-57351-9_16, 2017.

Queiroz, R., Passos, L., Valente, M. T., Hunsen, C., Apel, S., Czarnecki, K. The shape of feature code: an analysis of twenty C-preprocessor-based systemsSoftware & Systems Modeling16, 96. https://doi.org/10.1007/s10270-015-0483-z, 2017.

Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V. Combining SAT Solvers with Computer Algebra Systems to Verify Combinatorial ConjecturesJournal of Automated Reasoning58, 339. https://doi.org/10.1007/s10817-016-9396-y, 2017.

Kido, K., Sedwards, S., Hasuo, I. Switching Delays and the Skorokhod Distance in Incrementally Stable Switched Systems. Seoul, South Korea: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-17910-6_9, 2017.

Hartmanns, A., Sedwards, S., D'Argenio, P. Efficient Simulation-based Verification of Probabilistic Timed AutomataEfficient Simulation-Based Verification of Probabilistic Timed Automata, 1419\textendash1430. Las Vegas, USA: IEEE. https://doi.org/10.1109/WSC.2017.8247885, 2017.

Ross, J., Murashkin, A., Liang, J. H., Antkiewicz, M., Czarnecki, K. Synthesis and Exploration of Multi-Level, Multi-Perspective Architectures of Automotive Embedded SystemsSoftware and Systems Modeling. https://doi.org/10.1007/s10270-017-0592-y, 2017.

Queiroz, R., Passos, L., Valente, M. T., Hunsen, C., Apel, S., Czarnecki, K. The shape of feature code: an analysis of twenty C-preprocessor-based systemsSoftware & Systems Modeling16, 96. https://doi.org/10.1007/s10270-015-0483-z, 2017.

2016

Khalilov, E., Ross, J., Antkiewicz, M., Völter, M., Czarnecki, K. Modeling and Optimizing Automotive Electric/Electronic (E/E) Architectures: Towards Making Clafer Accessible to PractitionersModeling and Optimizing Automotive Electric Electronic (E E) Architectures: Towards Making Clafer Accessible to Practitioners. Presented at the. https://doi.org/10.1007/978-3-319-47169-3_37, 2016.

Liang, J. H., Ganesh, V., Poupart, P., Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT SolversExponential Recency Weighted Average Branching Heuristic for SAT Solvers. Presented at the. Retrieved from http://dl.acm.org/citation.cfm?id=3016100.3016385, 2016.

Zulkoski, E., Ganesh, V., Czarnecki, K. MathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT SolversMathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers. AAAI Press, 2016.

Theses

Atrisha Sarkar, Meta-learning Performance Prediction of Highly Configurable Systems: A Cost-oriented Approach. Waterloo. Retrieved from http://hdl.handle.net/10012/10406, 2016.

2015

Sarkar, A., Guo, J., Siegmund, N., Apel, S., Czarnecki, K. Cost-efficient sampling for performance prediction of configurable systemsCost-Efficient Sampling for Performance Prediction of Configurable Systems. Retrieved from https://ieeexplore.ieee.org/document/7372023, 2015.