Events - December 2018

Thursday, December 13, 2018 — 9:00 AM EST

Haotian Zhang, PhD candidate
David R. Cheriton School of Computer Science

Dynamic sampling (DS) is applied to create a sampled set of relevance judgments in our participation of TREC Common Core Track 2018. One goal was to test the effectiveness and efficiency of this technique with a set of non-expert, secondary relevance assessors.  We consider NIST assessors to be the experts and the primary assessors. Another goal was to make available to other researchers a sampled set of relevance judgments (prels) and thus allow the estimation of retrieval metrics that have the potential to be more robust than the standard NIST provided relevance judgments (qrels). In addition to creating the prels, we also submitted several runs based on our manual judging and the models produced by our HiCAL system. 

Wednesday, December 12, 2018 — 12:15 PM EST

Zeynep Korkmaz, PhD candidate
David R. Cheriton School of Computer Science

Analysis on graphs have powerful impact on solving many social and scientific problems, and applications often perform expensive traversals on large scale graphs. Caching approaches on top  of persistent storage are among the classical solutions to handle high request throughput. However, graph processing applications have poor access locality, and caching algorithms do not improve disk I/O sufficiently. We present GAL, a graph-aware layout for disk-resident graph databases that generates a storage layout for large-scale graphs on disk with the objective of increasing locality of disk blocks and reducing the number of I/O operations for transactional workloads.

Monday, December 10, 2018 — 10:30 AM EST

Panos K. Chrysanthis, University of Pittsburgh

Abstract: Online analytics, in most advanced scientific, business, and defense applications, rely heavily on the efficient execution of large numbers of Aggregate Continuous Queries (ACQs). ACQs continuously aggregate streaming data and periodically produce results such as max or average over a given window of the latest data.  It was shown that in processing ACQs it is beneficial to use incremental evaluation, which involves storing and reusing calculations performed over the unchanged parts of the window, rather than performing the re-evaluation of the entire window after each update.

S M T W T F S
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
  1. 2019 (25)
    1. December (1)
    2. November (4)
    3. October (3)
    4. September (1)
    5. August (2)
    6. July (1)
    7. June (1)
    8. May (4)
    9. April (4)
    10. March (1)
    11. February (2)
    12. January (1)
  2. 2018 (26)
    1. December (3)
    2. November (4)
    3. October (3)
    4. September (2)
    5. July (3)
    6. June (1)
    7. May (3)
    8. April (3)
    9. March (3)
    10. January (1)
  3. 2017 (15)
  4. 2016 (25)
  5. 2015 (19)
  6. 2014 (34)