Wednesday, June 12, 2019

Wednesday, June 12, 2019 — 12:15 PM EDT

Alireza Heidari, PhD candidate
David R. Cheriton School of Computer Science

We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement.

S M T W T F S
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
  1. 2019 (27)
    1. December (2)
    2. November (5)
    3. October (3)
    4. September (1)
    5. August (2)
    6. July (1)
    7. June (1)
    8. May (4)
    9. April (4)
    10. March (1)
    11. February (2)
    12. January (1)
  2. 2018 (26)
    1. December (3)
    2. November (4)
    3. October (3)
    4. September (2)
    5. July (3)
    6. June (1)
    7. May (3)
    8. April (3)
    9. March (3)
    10. January (1)
  3. 2017 (15)
  4. 2016 (25)
  5. 2015 (19)
  6. 2014 (34)