Title | A Semi-supervised Approach for Ice-water Classification Using Dual-Polarization SAR Satellite Imagery |
Publication Type | Conference Paper |
Year of Publication | 2015 |
Authors | Li, F., D. A. Clausi, L. Wang, and L. Xu |
Conference Name | CVPR 2015 Earthvision Workshop |
Keywords | Remote Sensing, Satellite SAR Sea Ice Classification |
Abstract | The daily interpretation of SAR sea ice imagery is very important for ship navigation and climate monitoring. Currently, the interpretation is still performed manually by ice analysts due to the complexity of data and the difficulty of creating fine-level ground truth. To overcome these problems, a semi-supervised approach for ice-water classification based on self-training is presented. The proposed algorithm integrates the spatial context model, region merging, and the self-training technique into a single framework. The backscatter intensity, texture, and edge strength features are incorporated in a CRF model using multi-modality Gaussian model as its unary classifier. Region merging is used to build a hierarchical data-adaptive structure to make |
A Semi-supervised Approach for Ice-water Classification Using Dual-Polarization SAR Satellite Imagery
Related files: