Decoupled active contour (DAC) for boundary detection

TitleDecoupled active contour (DAC) for boundary detection
Publication TypeJournal Article
Year of Publication2011
AuthorsMishra, A., P. Fieguth, and D. A. Clausi
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Pagination310 - 324
KeywordsComputer Vision, decoupled active contour, Hidden Markov Model, hidden Markov models, image measurement, image segmentation, object boundary detection, object detection, search problems, segmentation accuracy, Viterbi optimizer, Viterbi search

The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.