## Tutte Colloquium - Paul Balduf

**Title: **Graph theory and Feynman integrals

Speaker: |
Paul Balduf |

Affiliation: |
University of Waterloo |

Location: |
MC 5501 |

**Abstract: **Feynman integrals are one of the most versatile tools in theoretical physics. They are used to compute perturbative solutions for various interacting systems. Examples include scattering amplitudes in quantum field theory, gravitational waves at black hole mergers, and the scaling behavior in statistical physics at critical points. Every Feynman integral is defined in terms of a corresponding Feynman graph, and besides the concrete physical application, it is interesting to study the number theory of Feynman integrals and how they are related to combinatorial properties of the underlying graph. What can we know about the value of the integral from examining the graph alone? In particular: Under which conditions will the Feynman integrals of two non-isomorphic graphs evaluate to the same number?