Current students

We hope you are enjoying your time in our graduate programs. Check out our course offerings, information about degree completion, the PhD qualifying exams, thePhD lecturing requirement, and instructions on submitting your PhD annual activity report. If you still have some years ahead in your grad studies, you might be interested in applying for scholarships.

If you have any administrative questions, please contact us at cograd@uwaterloo.ca.

Seminars in Combinatorics and Optimization

Monday, February 26, 2024 11:30 am - 12:30 pm EST (GMT -05:00)

Algebraic Graph Theory - Yuval Widgerson

Title: The limits of the inertia bound

Speaker: Yuval Widgerson
Affiliation: ETH Zürich
Location: Please contactSabrina Latofor Zoom link.

Abstract: Spectral graph theory provides us with a wide array of surprising results which relate graph-theoretic parameters to linear-algebraic parameters of associated matrices. Among the most well-known and useful of these is Hoffman’s ratio bound, which gives an upper bound on the independence number of a graph in terms of its eigenvalues.

Tuesday, February 27, 2024 3:00 pm - 4:00 pm EST (GMT -05:00)

Graphs and Matroids - Aristotelis Chaniotis

Title: Intersections of graphs and χ-boundedness: Interval graphs, chordal graphs, and χ-guarding graph classes

Speaker: Aristotelis Chaniotis
Affiliation: University of Waterloo
Location: MC 5417

Abstract: Following A. Gyárfás (1987), we say that a hereditary class of graphs is χ-bounded if there exists a function which provides an upper bound for the chromatic number of each graph of the class in terms of the graph's clique number. In this terminology, E. Asplund and B.Grünbaum (1960),  motivated by a question of A. Bielecski (1948), proved that the class of intersection graphs of axis parallel rectangles is χ-bounded, and J. P. Burling, in his Ph.D. thesis (1965), proved that the class of intersection graphs of axis parallel boxes in R^3 is not χ-bounded.

Friday, March 1, 2024 12:00 pm - 1:30 pm EST (GMT -05:00)

C&O Reading Group - David Aleman

Title: A O(log log (rank) ) - competitive algorithm for the matroid secretary problem - Part 2

Speaker: David Aleman
Affiliation: University of Waterloo
Location: MC 6029

Abstract: In this talk we continue to review a O(log log(rank) ) - competitive algorithm for the matroid secretary problem (MSP) due to  Feldman, Svensson and Zenklusen, where rank denotes the rank of the given matroid.