Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Modular relations between chromatic symmetric functions
Speaker: | Farid Aliniaeifard |
Affiliation: | University of British Columbia |
Zoom: | Contact Logan Crew or Olya Mandelshtam |
Abstract:
In 1995, Stanley introduced the chromatic symmetric functions. The study of chromatic symmetric functions of graphs inspired two main research directions. The first research direction is to prove the Stanley-Stembridge conjecture: if a poset is $(3+1)$-free, then the chromatic symmetric function of its incomparability graph is $e$-positive, i.e., a nonnegative linear combination of elementary symmetric functions. The second research direction is to determine whether two non-isomorphic trees can have the same chromatic symmetric function. In this talk, we present several modular relations between chromatic symmetric functions and apply them to show that the Stanley-Stembridge conjecture is true for several new families of graphs. Moreover, using the modular relations, we give an algorithm to write the chromatic symmetric functions of trees in terms of the chromatic symmetric functions of paths. (Joint work with Victor Wang and Stephanie van Willigenburg).
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.