Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: The Hat Guessing Number of Graphs
Speaker: | Jeremy Chizewer |
Affiliation: | University of Waterloo |
Location: | MC 5479 in person |
Abstract: The hat guessing number HG(G) of a graph G on n vertices is defined in terms of the following game: n players are placed on the n vertices of G, each wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
In this talk, I will begin with an illustrative example and then show the lower bound on HG(G(n,1/2)), where G(n,1/2) denotes the random graph on n vertices where each edge is included uniformly and independently with probability 1/2. I will also discuss the linear hat guessing number.
This is based on joint work with Noga Alon.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.