Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Chromatic symmetric functions of Dyck paths and $q$-rook theory
Speaker: | Laura Colmenarejo |
Affiliation: | UMass Amherst |
Zoom: | Contact Karen Yeats |
Abstract:
Given a graph and a set of colors, a coloring of the graph is a function that associates each vertex in the graph with a color. In 1995, Stanley generalized this definition to symmetric functions by looking at the number of times each color is used and extending the set of colors to $\mathbb{Z}^+$. In 2012, Shareshian and Wachs introduced a refinement of the chromatic functions for ordered graphs as $q$-analogues.
In the particular case of Dyck paths, Stanley and Stembridge described the connection between chromatic symmetric functions of abelian Dyck paths and square hit numbers, and Guay-Paquet described their relation to rectangular hit numbers.
Recently, Abreu-Nigru generalized the former connection for the Shareshian-Wachs $q$-analogue, and in unpublished work, Guay-Paquet generalized the latter. Both of these generalizations use the Garsia-Remmel $q$-hit numbers.
In this talk, I want to give an overview of the framework and present another proof of Guay-Paquet's identity using $q$-rook theory and use it to give a new proof of the Abreu-Nigru identity. This is recent work with Alejandro H. Morales and Greta Panova.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.