Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: A Primal-Dual Extension of the Goemans and Williamson Algorithm for Weighted Fractional Cut Cover
Speaker: | Nathan Benedetto Proenca |
Affiliation: | University of Waterloo |
Location: | Please contact Sabrina Lato for Zoom link |
Abstract: A cut in a graph G = (V, E) is a set of edges which has one endpoint in S, for a given subset S of V. The fractional cut-covering number is the optimal value of a linear programming relaxation for the problem of covering each edge by a set of cuts. Beyond its role as part of Šámal's work on cut continuous functions, this graph parameter also arises as the gauge dual of the maximum cut problem. This connection allows one to extend the celebrated Goemans and Williamson approximation algorithm into this new setting, providing a deeper insight into both. This talk will survey some of the main points of this extension.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.