Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs
Speaker: | Thomas Wong |
Affiliation: | Creighton University |
Zoom: | Contact Soffia Arnadottir |
Abstract:
The continuous-time quantum walk is a particle evolving by Schrödinger's equation in discrete space. Encoding the space as a graph of vertices and edges, the Hamiltonian is proportional to the discrete Laplacian. In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead. It is well-known that these quantum walks are equivalent when the graph is regular, i.e., when each vertex has the same number of neighbors. If the graph is irregular, however, the quantum walks evolve differently. In this paper, we show that for some irregular graphs, if the particle is initially localized at a certain vertex, the probability distributions of the two quantum walks are identical, even though the amplitudes differ. We analytically prove this for a graph with five vertices and a graph with six vertices. By simulating the walks on all 1,018,689,568 simple, connected, irregular graphs with eleven vertices or less, we found sixty-four graphs with this notion of equivalence. We also give eight infinite families of graphs supporting these equivalent walks. This is joint work with Joshua Lockhart, and a preprint is available at https://arxiv.org/abs/2107.05580
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.