Algebraic Graph Theory Seminar - Thomas Wong

Monday, July 26, 2021 11:30 am - 11:30 am EDT (GMT -04:00)

Title: Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs

Speaker: Thomas Wong
Affiliation: Creighton University
Zoom: Contact Soffia Arnadottir


The continuous-time quantum walk is a particle evolving by Schrödinger's equation in discrete space. Encoding the space as a graph of vertices and edges, the Hamiltonian is proportional to the discrete Laplacian. In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead. It is well-known that these quantum walks are equivalent when the graph is regular, i.e., when each vertex has the same number of neighbors. If the graph is irregular, however, the quantum walks evolve differently. In this paper, we show that for some irregular graphs, if the particle is initially localized at a certain vertex, the probability distributions of the two quantum walks are identical, even though the amplitudes differ. We analytically prove this for a graph with five vertices and a graph with six vertices. By simulating the walks on all 1,018,689,568 simple, connected, irregular graphs with eleven vertices or less, we found sixty-four graphs with this notion of equivalence. We also give eight infinite families of graphs supporting these equivalent walks. This is joint work with Joshua Lockhart, and a preprint is available at