Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints
Speaker: | Noah Weninger |
Affiliation: | University of Waterloo |
Location: | MC 6029 |
Abstract: We consider the bilevel knapsack problem with interdiction constraints, a generalization of 0-1 knapsack. In this problem, there are two knapsacks and n items. The objective is to select some items to pack into the first knapsack (i.e. interdict) such that the maximum profit attainable from packing the remaining items into the second knapsack is minimized. We present a combinatorial branch-and-bound algorithm which outperforms the current state-of-the-art solution method in computational experiments for 99% of the instances reported in the literature. On many of the harder instances, our algorithm is orders of magnitude faster, which enabled it to solve 53 of the 72 previously unsolved instances. Our result relies fundamentally on a new dynamic programming algorithm which computes very strong lower bounds. This dynamic program solves a relaxation of the problem from bilevel to 2n-level where the items are processed in an online fashion. The relaxation is easier to solve but approximates the original problem surprisingly well in practice. We believe that this same technique may be useful for other interdiction problems.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.