Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: One Dollar Each Eliminates Envy
Speaker: | Vishnu V. Narayan |
Affiliation: | McGill University |
Zoom: | Contact Sharat Ibrahimpur |
Abstract:
We study the fair division of a collection of $m$ indivisible goods amongst a set of $n$ agents. Whilst envy-free allocations typically do not exist in the indivisible goods setting, envy-freeness can be achieved if some amount of a divisible good (money) is introduced. Specifically, Halpern and Shah (SAGT 2019, pp.374-389) showed that, given additive valuation functions where the marginal value of each item is at most one dollar for each agent, there always exists an envy-free allocation requiring a subsidy of at most $(n−1)m$ dollars. The authors also conjectured that a subsidy of $n−1$ dollars is sufficient for additive valuations. We prove this conjecture. In fact, a subsidy of at most one dollar per agent is sufficient to guarantee the existence of an envy-free allocation. Further, we prove that for general monotonic valuation functions an envy-free allocation always exists with a subsidy of at most $2(n−1)$ dollars per agent. In particular, the total subsidy required for monotonic valuations is independent of the number of items.
Joint work with Johannes Brustle, Jack Dippel, Mashbat Suzuki, and Adrian Vetta.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.