Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Why Random Reshuffling Beats Stochastic Gradient Descent
Speaker: | Julian Romero |
Affiliation: | University of Waterloo |
Room: | MC 5479 |
Abstract: Over the first few lectures in the seminar we studied the Stochastic Gradient Descent (SGD) method to minimize functions of the form $f=\sum_{i=1}^m f_i$ for $m$ large. In this talk I will go over a variant of (SGD) called Random Reshuffling (RR). In this method, the descent directions are chosen from the component functions $f_i$ at random as in (SGD), but the choice is made \textit{without replacement} and in a cyclic fashion. In the past, numerical computations have shown evidence of (RR) outperforming (SGD), however a proof of this fact was missing until very recently. I will go over the basic ideas surrounding the proof for the case in which the functions $f_i$ are quadratics. Time permitting I will explain the general case when the $f_i$'s are smooth.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.