Graphs and Matroids - Ahmad AbdiExport this event to calendar

Wednesday, March 13, 2019 — 3:30 PM EDT

Title: Ideal clutters and k-wise intersecting families

Speaker: Ahmad Abdi
Affiliation: Carnegie Mellon University
Room: MC 5501

Abstract:

A clutter is *ideal* if the corresponding set covering polyhedron has no fractional vertices, and it is *k-wise intersecting* if the members don’t have a common element but every k members do. We conjecture that there is a constant k such that every k-wise intersecting clutter is non-ideal.

I will show how this conjecture for k=4 would be an extension of Jaeger’s 8-flow theorem, and how a variation of the conjecture for k=3 would be an extension of Tutte’s 4-flow conjecture. I will also discuss connections to tangential 2-blocks, binary projective geometries, the sums of circuits property, etc.

Joint work with Gerard Cornuejols and Dabeen Lee.

Location 
MC - Mathematics & Computer Building
5501
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
  1. 2019 (167)
    1. December (5)
    2. November (15)
    3. October (18)
    4. September (15)
    5. August (9)
    6. July (17)
    7. June (18)
    8. May (16)
    9. April (9)
    10. March (24)
    11. February (13)
    12. January (8)
  2. 2018 (138)
    1. December (2)
    2. November (18)
    3. October (14)
    4. September (9)
    5. August (2)
    6. July (10)
    7. June (13)
    8. May (17)
    9. April (9)
    10. March (19)
    11. February (14)
    12. January (11)
  3. 2017 (103)
  4. 2016 (137)
  5. 2015 (136)
  6. 2014 (88)
  7. 2013 (48)
  8. 2012 (39)
  9. 2011 (36)
  10. 2010 (40)
  11. 2009 (40)
  12. 2008 (39)
  13. 2007 (15)