Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: A Short Proof of the Containers Theorem for Hypergraphs
Speaker: | Michelle Delcourt |
Affiliation: | University of Waterloo |
Room: | MC 6486 |
Abstract: A modern trend in extremal combinatorics is extending classical results from the dense setting (e.g. Szemerédi's theorem) to the sparse random setting. More precisely, one shows that a property of a given "dense" structure is inherited by a randomly chosen "sparse" substructure. A recent breakthrough tool for proving such statements is the Balogh–Morris–Samotij and Saxton–Thomason hypergraph containers method, which bounds the number of independent sets in homogeneously dense finite hypergraphs, thus implying that a random sparse subset is not independent. Here we present the first known deterministic proof of the containers theorem that is not algorithmic, i.e., it does not involve an iterative process. This is joint work with Anton Bernshteyn, Henry Towsner, and Anush Tserunyan.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.