Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Obstructions for matroids of path-width at most k and graphs of linear rank-width at most k
Speaker: | Sang-il Oum |
Affiliation: | Institute for Basic Science / KAIST |
Zoom: | Join via http://matroidunion.org/?page_id=2477 or please email Shayla Redlin |
Abstract:
Every minor-closed class of matroids of bounded branch-width can be characterized by a minimal list of excluded minors, but unlike graphs, this list could be infinite in general. However, for each fixed finite field $\mathbb F$, the list contains only finitely many $\mathbb F$-representable matroids, due to the well-quasi-ordering of $\mathbb F$-representable matroids of bounded branch-width under taking matroid minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive and does not provide any algorithm for computing these $\mathbb F$-representable excluded minors in general.
We consider the class of matroids of path-width at most $k$ for fixed $k$. We prove that for a finite field $\mathbb F$, every $\mathbb F$-representable excluded minor for the class of matroids of path-width at most~$k$ has at most $2^{|\mathbb{F}|^{O(k^2)}}$ elements. We can therefore compute, for any integer $k$ and a fixed finite field $\mathbb F$, the set of $\mathbb F$-representable excluded minors for the class of matroids of path-width $k$, and this gives as a corollary a polynomial-time algorithm for checking whether the path-width of an $\mathbb F$-represented matroid is at most $k$. We also prove that every excluded pivot-minor for the class of graphs having linear rank-width at most $k$ has at most $2^{2^{O(k^2)}}$ vertices, which also results in a similar algorithmic consequence for linear rank-width of graphs.
This is joint work with Mamadou M. Kanté, Eun Jung Kim, and O-joung Kwon.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.