Title: Integer programs with bounded subdeterminants and two nonzeros per row
Speaker: | Stefan Weltge |
Affiliation: | Technical University of Munich |
Location: | MC 5501 or contact Eva Lee for Zoom link |
Abstract: Determining the complexity of integer linear programs with integer coefficient matrices whose subdeterminants are bounded by a constant is currently a very actively discussed question in the field. In this talk, I will present a strongly polynomial-time algorithm for such integer programs with the further requirement that every constraint contains at most two variables. The core of our approach is the first polynomial-time algorithm for the weighted stable set problem on graphs that do not contain more than k vertex-disjoint odd cycles, where k is any constant. Previously, polynomial-time algorithms were only known for k = 0 (bipartite graphs) and for k = 1.
This is joint work with Samuel Fiorini, Gwenaël Joret, and Yelena Yuditsky, which recently appeared at FOCS this year.