Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Proof of the Clustered Hadwiger Conjecture
Speaker: | Vida Dujmovic |
Affiliation: | University of Ottawa |
Location: | MC 5501 |
Abstract: Hadwiger's Conjecture asserts that every Kh-minor-free graph is properly (h-1)-colourable. We prove the following improper analogue of Hadwiger's Conjecture: for fixed h, every Kh-minor-free graph is (h-1)-colourable with monochromatic components of bounded size.The number of colours is best possible regardless of the size of monochromatic components. It solves an open problem of Edwards, Kang, Kim, Oum and Seymour [SIAM J. Disc. Math. 2015], and concludes a line of research initiated in 2007. Similarly, for fixed t ⩾ s, we show that every Ks,t-minor-free graph is (s+1)-colourable with monochromatic components of bounded size. The number of colours is best possible, solving an open problem of van de Heuvel and Wood [J. London Math. Soc. 2018]. We actually prove a single theorem from which both of the above results are immediate corollaries.
This is joint work with Louis Esperet, Pat Morin and David R. Wood.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.