Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Speaker: | Bert Gerards |
---|---|
Affiliation: | CWI, Netherlands |
Room: | Mathematics & Computer Building (MC) 5158 |
Given a separable strongly self-concordant function $f:\R^n \rightarrow \R$, we show the associated spectral function $F(X)= (f \circ \lambda)(X)$ is also strongly self-concordant function. In addition, there is a universal constant $\mathcal{O}$ such that, if $f(x)$ is separable self-concordant barrier then $\mathcal{O}^2F(X)$ is a self-concordant barrier. We estimate that for the universal constant we have $\mathcal{O} \le 22$. This generalizes the relationship between the standard logarithmic barriers $-\sum_{i=1}^n\log x_i$ and $-\log \det X$ and gives a partial solution to a conjecture of L. Tunçel.
This is a joint work with Javier Peña, Carnegie Mellon University.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.