Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, December 3, 2024 1:00 pm - 2:00 pm EST (GMT -05:00)

C&O Reading Group - Mahtab Alghasi

Title: A constant factor approximation for Nash social welfare with subadditive valuations, Part II

Speaker: Mahtab Alghasi
Affiliation: University of Waterloo
Location: MC 6029

Abstract::Social welfare refers to a class of optimization problems where the goal is to allocate subsets of resources $\mathcal{I}$ among agents $\mathcal{A}$ (or people) such that maximizes the overall "happiness" of society in a fair and efficient manner. More specifically, each agent $i \in \mathcal{I}$ has an intrinsic \emph{valuation} function $v_i: 2^{\mathcal{I}}\rightarrow \mathbb{R}$, which is a monotone function with $v_i(\emptyset)=0$, and $v_i$ quantifies the intrinsic value for subsets of items $S\subseteq \mathcal{I}$.

Variations of allocation with different valuation and objective functions has been studied in different areas of computer science, economies, and game theory. In this talk we focus on the Nash social welfare welfare (NSW) problem; given an allocation $\mathcal{S}= (S_i)_{i\in \mathcal{A}}$ the goal is to maximize the geometric mean of agents valuations.

Unfortunately, Nash social welfare problem is NP-hard already in the case of two agents with identical additive valuations, and it is NP-hard to approximate within a factor better than 0.936 for additive valuations and $(1-\frac{1}{e})$ for submodular valuation. 

Moreover, the current best approximation factors of $\simeq 0.992$ for additive valuations and $(\frac{1}{4}-\epsilon)$ for submodular valuations were found by Barman et al (2018) and Garg et al. (2023), respectively.

In this talk, we present a sketch of the algorithm in recent work by Dobzinski et al., which proves the first constant-factor approximation algorithm (with a fairly large constant $\sim \frac{1}{375,000}$) for NSW problem with subadditive valuations accessible via demand queries.

Tuesday, December 3, 2024 2:00 pm - 3:00 pm EST (GMT -05:00)

Graphs and Matroids - Sepehr

Title: The pathwidth theorem for induced subgraphs

Speaker: Sepehr
Affiliation: University of Waterloo
Location: MC 5417

Abstract: We present a full characterization of the unavoidable induced subgraphs of graphs with large pathwidth. This consists of two results. The first result says that for every forest H, every graph of sufficiently large pathwidth contains either a large complete subgraph, a large complete bipartite induced minor, or an induced minor isomorphic to H. The second result describes the unavoidable induced subgraphs of graphs with a large complete bipartite induced minor. If time permits , we will also try to discuss the proof of the first result mentioned above.

Based on joint work with Maria Chudnovsky and Sophie Spirkl.

Thursday, December 5, 2024 2:00 pm - 3:00 pm EST (GMT -05:00)

Algebraic and enumerative combinatorics seminar-David Wagner

Title:Valuable partial orders

Speaker David Wagner
Affiliation University of Waterloo
Location MC 5479

 Abstract: In the pre-seminar we will review Birkhoff's structure theory for finite distributive lattices and its consequences for the geometry of some algebraic varieties associated with lattices by Hibi. In the seminar itself we will look more closely at the geometry of these varieties, motivating the definition of an interesting class of partial orders and raising several open problems.

There will be a pre-seminar presenting relevant background at the beginning graduate level starting at 1pm,

Friday, December 6, 2024 3:30 pm - 4:30 pm EST (GMT -05:00)

Tutte colloquium-Robert Andrews

Title: Constant-Depth Arithmetic Circuits for Linear Algebra Problems

Speaker: Robert Andrews
Affiliation: University of Waterloo
Location: MC 5501

Abstract: What is the computational complexity of the greatest common divisor (GCD) of two univariate polynomials? The Euclidean algorithm provides a polynomial-time solution, and fast variants of the Euclidean algorithm can compute the GCD in nearly-linear time. The GCD can also be expressed in a linear-algebraic form. Basic tasks in linear algebra, such as computing determinants and solving linear systems, can be performed in O(log^2 n) parallel time, and this can be used to compute the GCD in O(log^2 n) parallel time. This algorithm does not take advantage of any structure present in the resulting linear systems, so in principle one could compute the GCD in parallel even faster.

In this talk, I will describe a new algorithm that computes the GCD in O(log n) parallel time by using a combination of polynomial interpolation and Newton's identities for symmetric polynomials. In fact, this algorithm can be implemented as an arithmetic circuit of constant depth. Similar ideas yield constant-depth circuits to compute the resultant, Bézout coefficients, and squarefree decomposition.