Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, August 17, 2020 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory Seminar - Gabriel Coutinho

Title: State transfer and the size of the graph

Speaker: Gabriel Coutinho
Affiliation: Universidade Federal de Minas Gerais
Zoom: Contact Soffia Arnadottir

Abstract:

If there is perfect state transfer between two vertices at distance d, how small can the graph be compared to d? This question is motivated by the fact that the known infinite families of graphs admitting state transfer at increasingly large distances are all obtained from graph products, thus their sizes grow exponentially compared to their diameter.

Friday, August 21, 2020 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Léo Ducas

Title: An Algorithmic Reduction Theory for Binary Codes: LLL and more

Joint work with Thomas Debris-Alazard and Wessel van Woerden

Speaker: Léo Ducas
Affiliation: Centrum Wiskunde & Informatica (CWI)
Zoom: Please email Emma Watson

Abstract:

Lattice reduction is the task of finding a basis of short and somewhat orthogonal vectors of a given lattice. In 1985 Lenstra, Lenstra and Lovasz proposed a polynomial time algorithm for this task, with an application to factoring rational polynomials. Since then, the LLL algorithm has found countless application in algorithmic number theory and in cryptanalysis.

Monday, August 24, 2020 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory Seminar - Bobae Johnson, August Liu, Malena Schmidt, Neo Yin

Title: Laplacian Quantum Fractional Revival On Graphs

Speakers:

Bobae Johnson, August Liu, Malena Schmidt, Neo Yin

Affiliation: York University
Zoom: Contact Soffia Arnadottir

Abstract:

Given a set of quantum bits, we can model their interactions using graphs. The continuous-time quantum walks on a graph can be viewed as the Schrödinger dynamics of a particle hopping between adjacent vertices. In this talk, the transition matrix of the continuous-time quantum walk is given by $e^{-itL}$, where $L$ is the graph’s Laplacian matrix.

Friday, August 28, 2020 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Sophie Spirkl

Title: Pure pairs

Speaker: Sophie Spirkl
Affiliation: University of Waterloo
Zoom: Please email Emma Watson.

Abstract:

A pure pair in a graph G is a pair of subsets A and B of the vertex set such that between A and B, either all edges or no edges are present in G. This concept was first introduced in connected with the Erdos-Hajnal conjecture, but has since developed a life of its own. I will give an overview of results and open questions on pure pairs.

Based on joint work with Maria Chudnovsky, Jacob Fox, Alex Scott, and Paul Seymour.

Monday, August 31, 2020 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory Seminar - William J. Martin

Title: Scaffolds

Speaker: William J. Martin
Affiliation: Worcester Polytechnic Institute
Zoom: Contact Soffia Arnadottir

Abstract:

Building on the work of various authors who have used tensors in the study of association schemes and spin models, I propose the term "scaffold" for certain tensors that have been represented by what are sometimes called "star-triangle diagrams" in the literature. The main goal of the talk is to introduce and motivate these objects which somewhat resemble partition functions as they appear in combinatorics. (The exact definition is too cumbersome to include here.)

Friday, September 4, 2020 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Joseph Paat

Title: Recent proximity results in integer linear programming

Speaker: Joseph Paat
Affiliation: UBC Sauder School of Business
Zoom: Please email Emma Watson.

Abstract:

We consider the proximity question in integer linear programming (ILP) --- Given a vector in a polyhedron, how close is the nearest integer vector? Proximity has been studied for decades with two influential results due to Cook et al. in 1986 and Eisenbrand and Weismantel in 2018. We derive new upper bounds on proximity using sparse integer solutions and mixed integer relaxations of the integer hull. When compared to previous bounds, these new bounds depend less on the dimensions of the constraint matrix and more on the data in the matrix.

Monday, September 7, 2020 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory Seminar - Eric Moorhouse

Title: Projective Planes, Finite and Infinite

Speaker: Eric Moorhouse
Affiliation: University of Wyoming
Zoom: Contact Soffia Arnadottir

Abstract:

A projective plane is a point-line incidence structure in which every pair of distinct points has a unique joining line, and every pair of distinct lines meets in a unique point. Equivalently (as described by its incidence graph), it is a bipartite graph of diameter 3 and girth 6. 

Friday, September 11, 2020 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Luke Postle

Title: Further progress towards Hadwiger's conjecture

Speaker: Luke Postle
Affiliation: University of Waterloo
Zoom: Please email Emma Watson.

Abstract:

In 1943, Hadwiger conjectured that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable. 

Title: Extensions of the Erdős-Ko-Rado theorem to 2-intersecting perfect matchings and 2-intersecting permutations

Speakers: Andriaherimanana Sarobidy Razafimahatratra & Mahsa Nasrollahi Shirazi
Affiliation: University of Regina
Zoom: Contact Soffia Arnadottir

Abstract:

The Erdős-Ko-Rado (EKR) theorem is a classical result in extremal combinatorics. It states that if n and k are such that $n\geq 2k$, then any intersecting family F of k-subsets of [n] = {1,2,...,n} has size at most $\binom{n-1}{k-1}$. Moreover, if n>2k, then equality holds if and only if F is a canonical intersecting family; that is, $\bigcap_{A\in F}A = \{i\}$, for some i in [n].

Monday, September 14, 2020 3:00 pm - 3:00 pm EDT (GMT -04:00)

Graphs and Matroids Seminar - Oliver Lorscheid

Title: Foundations of Matroids without Large Uniform Minors, Part 2

Speaker: Oliver Lorscheid
Affiliation: Instituto Nacional de Matemática Pura e Aplicada
Zoom: Contact Rose McCarty

Abstract:

In this talk, we take a look under the hood of last week’s talk by Matt Baker: we inspect the foundation of a matroid.

The first desired properties follow readily from its definition: the foundation represents the rescaling classes of the matroid and shows a functorial behaviour with respect to minors and dualization.