Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, May 29, 2023 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory: Steve Kirkland

Title: Eigenvalues for stochastic matrices with a prescribed stationary distribution

Speaker: Steve Kirkland
Affiliation: University of Manitoba
Location: Please contact Sabrina Lato for Zoom link

Abstract: A square nonnegative matrix T is called stochastic if all of its row sums are equal to 1. Under mild conditions, it turns out that there is a positive row vector w^T (called the stationary distribution for T) whose entries sum to 1 such that the powers of T converge to the outer product of w^T with the all-ones vector. Further, the nature of that convergence is governed by the eigenvalues of T.

In this talk we explore how the stationary distribution for a stochastic matrix exerts an influence on the corresponding eigenvalues.

Friday, June 2, 2023 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - David Gosset

Title: On the complexity of quantum partition functions

Speaker: David Gosset
Affiliation: University of Waterloo
Location: MC 5501

Abstract: Quantum complexity theory has been intertwined with the study of quantum many-body systems ever since Kitaev's insight that computing their ground energies is an intractable quantum constraint satisfaction problem that is complete for a quantum generalization of NP.

Monday, June 5, 2023 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory - Martin Stefanak

Title: Quantum walk state transfer on a hypercube

Speaker: Martin Stefanak
Affiliation: Czech Technical University
Location: Please contact Sabrina Lato for Zoom link

Abstract: We investigate state transfer on a hypercube by means of a quantum walk where the sender and the receiver vertices are marked by weighted loops.

Friday, June 9, 2023 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Shi Li

Title: Online Unrelated-Machine Load Balancing and Generalized Flow with Recourse

Speaker: Shi Li
Affiliation: University at Buffalo
Location: MC 5501

Abstract: I will present the online algorithms for unrelated-machine load balancing problem with recourse.  First, we shall present a (2+\epsilon)-competitive algorithm for the problem with O_\epsilon(\log n) amortized recourse per job.

Monday, June 12, 2023 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory - William Linz

Title: L-systems and the Lovasz number

Speaker: William Linz
Affiliation: University of South Carolina
Location: Please contact Sabrina Lato for Zoom link

Abstract: For positive integers n and k, an L-system is a collection of k-uniform subsets of a set of size n whose pairwise intersection sizes all lie in in the set L. The maximum size of an L-system is equal to the independence number of a certain union of graphs in the Johnson scheme. The Lovasz number is a semidefinite programming approximation of the independence number of a graph. In this talk, we survey the relationship between the maximum size of an L-system and the Lovasz number, illustrating examples both where the Lovasz number is a good approximation and where it is a bad approximation.

Thursday, June 15, 2023 1:00 pm - 1:00 pm EDT (GMT -04:00)

Algebraic Combinatorics - Matthew Satriano

Title: Monomial ideals, Galois closures, and Hilbert schemes of points

Speaker: Matthew Satriano
Affiliation: University of Waterloo
Location: MC 5501 and Zoom - please contact Oliver Pechenik for the Zoom link

Abstract: Manjul Bhargava and the speaker introduced a functorial Galois closure operation for finite-rank ring extensions, generalizing constructions of Grothendieck and Katz-Mazur. In this talk, we use Galois closures to construct new components of Hilbert schemes of points, which are fundamental objects in algebraic geometry whose component structure is largely mysterious. We answer a 35 year old open problem posed by Iarrobino by constructing an infinite family of low dimensional components. This talk is based on joint work with Andrew Staal. No prior knowledge of Hilbert schemes will be assumed.

Friday, June 16, 2023 3:30 pm - 3:30 pm EDT (GMT -04:00)

Tutte Colloquium - Ting Kei Pong

Title: Error bounds for conic feasibility problems: case studies on the exponential cone

Speaker: Ting Kei Pong
Affiliation: The Hong Kong Polytechnic University
Location: MC 5501

Abstract: Conic feasibility problems naturally arise from linear conic programming problems. An understanding of error bounds for these problems is instrumental in the design of termination criteria for conic solvers and the study of convergence rate of algorithms.

Monday, June 19, 2023 11:30 am - 11:30 am EDT (GMT -04:00)

Algebraic Graph Theory - Sung Song

Title: Partial geometric designs, directed strongly regular graphs, and association scheme

Speaker: Sung Song
Affiliation: Iowa State University
Location: Please contact Sabrina Lato for Zoom link

Abstract: A partial geometric design with parameters $(v, b, k, r; \alpha, \beta)$ is a tactical configuration $(P, \mathcal{B})$ (with $|P|=v$, $|\mathcal{B}|=b$, every point $p\in P$ belonging to $r$ blocks, and every block $B\in\mathcal{B}$ consisting of $k$ points) satisfying the property:

{for any pair $(p, B)\in P\times \mathcal{B}$, the number of flags $(q, C)$ with $q\in B$ and $C\ni p$ equals to $\alpha  \mbox{ if } p\notin B$ and to $\beta  \mbox{ if } p\in B$.}

Neumaier studied partial geometric designs in detail in his article, ``$t\frac12$-designs," [JCT A {\bf 28}, 226-248 (1980)]. He investigated their connection with strongly-regular graphs and gave various characterizations of partial geometries, bipartite graphs, symmetric 2-designs, and transversal designs in terms of partial geometric designs.

Thursday, June 22, 2023 1:00 pm - 1:00 pm EDT (GMT -04:00)

Algebraic Combinatorics - Karen Yeats

Title: Poset subHopf algebras from growth models in causal set theory and quantum field theory

Speaker: Karen Yeats
Affiliation: University of Waterloo
Location: MC 5501 and Zoom - please contact Oliver Pechenik for the Zoom link

Abstract: In a story some of you have heard from me before, we get subHopf algebras of the Connes-Kreimer Hopf algebra of rooted trees from certain simple tree classes which correspond to solutions to combinatorial analogues of Dyson-Schwinger equations in quantum field theory.  Another important subHopf algebra of the Connes-Kreimer Hopf algebra is the Connes-Moscovici Hopf algebra which can be viewed as coming from rooted trees grown by adding leaves.