Publications

Search
Author [ Title(Desc)] Type Year
A
Zhang, N. , Han, X. , He, Y. , Xie, H. , & Young, C. . (2019). An algebraic multigrid method for eigenvalue problems. East Asian Journal on Applied Mathematics.
Wang, D. , He, Y. , & De Sterck, H. . (2021). On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM. Journal of Scientific Computing, 88(2). Retrieved from https://link.springer.com/article/10.1007/s10915-021-01548-2
De Sterck, H. , & He, Y. . (2021). On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES. SIAM Journal on Scientific Computing, S21-S46. Retrieved from https://epubs.siam.org/doi/abs/10.1137/20M1347139?af=R
Dang, H. , He, Y. , Xie, H. , & Zhang, N. . (Submitted). An augmented subspace projection method for eigenvalue problems.
I
He, Y. . (2021). Independence of placement for local Fourier analysis. Numerical Linear Algebra with Applications. Retrieved from https://doi.org/10.1002/nla.2388
L
He, Y. , & MacLachlan, S. P. . (2019). Local Fourier analysis for mixed finite-element methods for the Stokes equations. Journal of Computational and Applied Mathematics, 357, 161-183.
He, Y. . (2018). Local Fourier analysis for saddle-point problems. Department of Mathematics and Statistics, Memorial University of Newfoundland. Retrieved from https://research.library.mun.ca/13507/1/He_Yunhui_doctoral.pdf
Farrell, P. E. , He, Y. , & MacLachlan, S. P. . (2021). A local Fourier analysis of additive Vanka relaxation for the Stokes equations. Numerical Linear Algebra with Applications, 28(3), e2306.
Brown, J. , He, Y. , & MacLachlan, S. P. . (2019). Local Fourier analysis of Balancing Domain Decomposition by Constraints algorithms. SIAM Journal on Scientific Computing, 41(5), S346–S369. Retrieved from https://epubs.siam.org/doi/abs/10.1137/18M1191373
He, Y. , & MacLachlan, S. P. . (2018). Local Fourier analysis of block-structured multigrid relaxation schemes for the Stokes equations. Numerical Linear Algebra with Applications, 24(3):e2147.
He, Y. , Rhebergen, S. , & De Sterck, H. . (2021). Local Fourier analysis of multigrid for hybridized and embedded discontinuous Galerkin methods. SIAM Journal on Scientific Computing. Retrieved from https://arxiv.org/abs/2006.11433
Thompson, J. , Brown, J. , & He, Y. . (Submitted). Local Fourier analysis of p-multigrid for high-order finite element operators.
Voronin, A. , He, Y. , MacLachlan, S. , Olson, L. , & Tuminaro, R. . (Submitted). Low-order preconditioning of the Stokes equations. Retrieved from https://arxiv.org/abs/2103.11967
M
Zhang, X. , & He, Y. . (2019). Modified interpolatory projection method for weakly singular integral equation eigenvalue problems. Acta Mathematicae Applicatae Sinica, 35(2), 327-339.
Adler, J. H. , He, Y. , Hu, X. , MacLachlan, S. P. , & Ohm, P. . (Submitted). Monolithic multigrid for a reduced-quadrature discretization of poroelasticity. Retrieved from https://arxiv.org/pdf/2107.04060.pdf
Chen, H. , He, Y. , Li, Y. , & Xie, H. . (2015). A multigrid method based on shifted-inverse power technique for eigenvalue problems. European Journal of Mathematics, 1(1), 207-228.
He, Y. , Li, Y. , Xie, H. , You, C. , & Zhang, N. . (2019). A multilevel Newton's method for eigenvalue problems. Applications of Mathematics, 63(3), 281-303.
T
Brown, J. , He, Y. , MacLachlan, S. , Menickelly, M. , & Wild, S. M. . (2021). Tuning multigrid methods with robust optimization and local Fourier analysis. SIAM Journal on Scientific Computing, 43(1), A109-A138, 2021.
He, Y. , & MacLachlan, S. P. . (2020). Two-level Fourier analysis of multigrid for higher-order finite-element discretizations of the Laplacian. Numerical Linear Algebra with Applications, 27(3), e2285.

Pages