The C&O department has 36 faculty members and 60 graduate students. We are intensely research oriented and hold a strong international reputation in each of our six major areas:
- Algebraic combinatorics
- Combinatorial optimization
- Continuous optimization
- Cryptography
- Graph theory
- Quantum computing
Read more about the department's research to learn of our contributions to the world of mathematics!

News
Three C&O faculty win Outstanding Performance Awards
The awards are given each year to faculty members across the University of Waterloo who demonstrate excellence in teaching and research.
Prof. Alfred Menezes is named Fellow of the International Association for Cryptologic Research
The Fellows program, which was established in 2004, is awarded to no more than 0.25% of the IACR’s 3000 members each year and recognizes “outstanding IACR members for technical and professional contributions to cryptologic research.”
C&O student Ava Pun receives Jessie W. H. Zou Memorial Award
She received the award in recognition of her research on simulating virtual training environments for autonomous vehicles, which she conducted at the start-up Waabi.
Events
Algebraic and enumerative combinatorics seminar-Elise Catania
Title:A Toric Analogue for Greene's Rational Function of a Poset
Speaker | Elise Catania |
Affiliation | University of Minnesota |
Location | MC 5479 |
Abstract: Given a finite poset, Greene introduced a rational function obtained by summing certain rational functions over the linear extensions of the poset. This function has interesting interpretations, and for certain families of posets, it simplifies surprisingly. In particular, Greene evaluated this rational function for strongly planar posets in his work on the Murnaghan–Nakayama formula. Develin, Macauley, and Reiner introduced toric posets, which combinatorially are equivalence classes of posets (or rather acyclic quivers) under the operation of flipping maximum elements into minimum elements and vice versa. In this work, we introduce a toric analogue of Greene's rational function for toric posets, and study its properties. In addition, we use toric posets to show that the Kleiss–Kuijf relations, which appear in scattering amplitudes, are equivalent to a specific instance of Greene's evaluation of his rational function for strongly planar posets. Also in this work, we give an algorithm for finding the set of toric total extensions of a toric poset.
Algebraic and enumerative combinatorics seminar-Jesse Kim
Title:Shifted Parking function
Speaker | Jesse Kim |
Affiliation | University of Florida |
Location | MC 5479 |
Abstract:Stanley recently introduced the shifted parking function symmetric function as a shifted analogue of the parking function symmetric function and posed the question of what the corresponding combinatorial objects are. This talk will answer that question and explain how the answer connects to projective representations of the symmetric group. Based on joint work with Zach Hamaker.
Tutte colloquium-Lior Gishboliner
Title:Regularity lemmas for hypergraphs of bounded VC dimension: improved bounds
Speaker: | Lior Gishboliner, |
Affiliation: | University of Toronto |
Location: | MC 5501 |
Abstract:An important result at the interface of graph theory and logic is that graphs of bounded VC dimension have (small) homogeneous vertex-partitions, i.e., partitions where almost every pair of parts has density close to 0 or 1. Recently, Chernikov and Towsner proved a hypergraph generalization of this fact. The quantitative aspects of their result remain open. I will present some recent progress on this problem, answering two questions of Terry. This is a joint work with Asaf Shapira and Yuval Wigderson.