Algebraic Combinatorics - Michael BorinskyExport this event to calendar

Thursday, November 24, 2022 — 1:00 PM EST

Title: Asymptotics of the Euler characteristic of Kontsevich's commutative graph complex

Speaker: Michael Borinsky
Affiliation: ETH, Zurich
Location: MC 5479 or contact Olya Mandelshtam for Zoom link

Abstract: I will present results on the asymptotic growth rate of the Euler characteristic of Kontsevich's commutative graph complex. By a work of Chan-Galatius-Payne, these results imply the same asymptotic growth rate for the top-weight Euler characteristic of M_g, the moduli 
space of curves, and establish the existence of large amounts of unexplained cohomology in this space. This asymptotic growth rate 
follows from new generating functions for the edge-alternating sum of graphs without odd automorphisms. I will give an overview on this 
interaction between topology and combinatorics and illustrate the combinatorial and analytical tools that were needed to obtain these 
generating functions.

Event tags 

S M T W T F S
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  1. 2022 (146)
    1. December (4)
    2. November (18)
    3. October (15)
    4. September (11)
    5. August (2)
    6. July (17)
    7. June (17)
    8. May (10)
    9. April (12)
    10. March (18)
    11. February (10)
    12. January (13)
  2. 2021 (103)
    1. December (3)
    2. November (7)
    3. October (6)
    4. September (12)
    5. August (6)
    6. July (10)
    7. June (12)
    8. May (7)
    9. April (9)
    10. March (13)
    11. February (8)
    12. January (10)
  3. 2020 (119)
  4. 2019 (167)
  5. 2018 (136)
  6. 2017 (103)
  7. 2016 (137)
  8. 2015 (136)
  9. 2014 (88)
  10. 2013 (48)
  11. 2012 (39)
  12. 2011 (36)
  13. 2010 (40)
  14. 2009 (40)
  15. 2008 (39)
  16. 2007 (15)