New Eigenvalue Bound for the Fractional Chromatic Number - Sam SpiroExport this event to calendar

Monday, January 16, 2023 — 11:30 AM EST

Title: New Eigenvalue Bound for the Fractional Chromatic Number

Speaker:  Sam Spiro
Affiliation: Rutgers University
Location: Contact Sabrina Lato for Zoom Link

Abstract: : Given a graph $G$, we let $s^+(G)$ denote the sum of the squares of the positive eigenvalues of the adjacency matrix of $G$, and we similarly define $s^-(G)$. We prove that \[\chi_f(G)\ge 1+\max\left\{\frac{s^+(G)}{s^-(G)},\frac{s^-(G)}{s^+(G)}\right\}\] and thus strengthen a result of Ando and Lin, who showed the same lower bound  for the chromatic number $\chi(G)$.  We in fact show a stronger result wherein we give a bound using the eigenvalues of $G$ and $H$ whenever $G$ has a homomorphism to an edge-transitive graph $H$. Our proof utilizes ideas motivated by association schemes (though requires no knowledge of them).  This is joint work with Krystal Guo.

Event tags 

S M T W T F S
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
  1. 2023 (55)
    1. June (3)
    2. May (12)
    3. April (5)
    4. March (17)
    5. February (10)
    6. January (8)
  2. 2022 (150)
    1. December (8)
    2. November (18)
    3. October (15)
    4. September (11)
    5. August (2)
    6. July (17)
    7. June (17)
    8. May (10)
    9. April (12)
    10. March (18)
    11. February (10)
    12. January (13)
  3. 2021 (103)
  4. 2020 (119)
  5. 2019 (167)
  6. 2018 (136)
  7. 2017 (103)
  8. 2016 (137)
  9. 2015 (136)
  10. 2014 (88)
  11. 2013 (48)
  12. 2012 (39)
  13. 2011 (36)
  14. 2010 (40)
  15. 2009 (40)
  16. 2008 (39)
  17. 2007 (15)