Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: Strongly regular graphs with a regular point
Speaker: | Krystal Guo |
Affiliation: | University of Amsterdam, Korteweg-de Vries Institute |
Location | MC 5501 or please contact Melissa Cambridge for the Zoom link |
Abstract: Arising from Hoffman and Singleton's study of Moore graphs, strongly regular graphs play an important role in algebraic graph theory. Strongly regular graphs can be construct from geometric objects, such as generalized quadrangles and certain geometric properties, such as having a regular point, can be studied in the context of graphs. We study pseudo-geometric strongly regular graphs whose second subconstituent with respect to a vertex is a cover of a strongly regular graph or a complete graph. By studying the structure of such graphs, we characterize all graphs containing such a vertex, thereby, answering a question posed by Gardiner, Godsil, Hensel, and Royle. As a by-product of our characterisation, we are able to give new constructions of infinite families of strongly regular graphs and compute many small sporadic examples, in particular, we find 135478 new strongly regular graphs with parameters (85,20,3,5) and 27 039 strongly regular graphs with parameters (156, 30, 4, 6).
This is joint work with Edwin van Dam.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.