Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Title: An Approximate Generalization of the Okamura-Seymour Theorem
Speaker: | Nikhil Kumar |
Affiliation: | University of Waterloo |
Location: | MC 5501 |
Abstract: We consider the problem of multicommodity flows in planar graphs. Okamura and Seymour showed that if all the demands are incident on one face, then the cut-condition is sufficient for routing demands. We consider the following generalization of this setting and prove an approximate max flow-min cut theorem: for every demand edge, there exists a face containing both its end points. We show that the cut-condition is sufficient for routing Ω(1) -fraction of all the demands. To prove this, we give a L1-embedding of the planar metric which approximately preserves distance between all pair of points on the same face.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations.