Tutte seminar - David Gosset

Friday, April 4, 2014 3:30 pm - 3:30 pm EDT (GMT -04:00)

The Bose-Hubbard Model is QMA-complete

Speaker: David Gosset
Affiliation: University of Waterloo
Room: Mathematics and Computer Building (MC) 5158


The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. This is joint work with Andrew Childs and Zak Webb.