Contact Info
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
Speaker: | Levent Tunçel |
---|---|
Affiliation: | University of Waterloo |
Room: |
Mathematics & Computer Building (MC) 5158 |
Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduction technique for nonnegative data. It consists in approximating a nonnegative data matrix with the product of two low-rank nonnegative matrices. NMF has become a very popular technique in data mining and machine learning because it automatically extracts meaningful features through a sparse and part-based representation. Although NMF is NP-hard in general, it has been shown very recently that it is possible to compute an optimal solution under the assumption that the input nonnegative data matrix is separable (i.e., there exists a cone spanned by a small subset of the columns containing all columns). Current approaches solving the separable NMF problem are either computationally expensive or not robust to noise. In this talk, we first introduce NMF and illustrate its usefulness with some application examples (namely, image processing, text mining and hyperspectral data analysis). Then, we present a new family of fast and robust recursive algorithms for separable NMF problems.
This is joint work with Stephen Vavasis.
Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext 33038
PDF files require Adobe Acrobat Reader.
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.