Title: Rate-distortion theory for quantum data compression
Speaker: | Kohdai Kuroiwa |
Affiliation: | University of Waterloo |
Location: | MC 5479 |
Abstract: Quantum data compression is a fundamental quantum information processing task, where the sender compresses many copies of a given quantum state into the smallest possible storage space before transmitting it to the receiver. Among various quantum data compression setups and analyses, the trade-off between the efficiency (rate) and the error of the compression has been investigated using the framework of quantum rate-distortion theory, in which a small error is tolerated to improve the rate. In this talk, adopting the quantum rate-distortion theory, we reveal the optimal rate-error trade-off of quantum data compression with and without the assistance of quantum entanglement. Moreover, we generalize these results to figure out the full rate region where both the communication and entanglement rates vary. Thus, we successfully obtain a complete form of the rate-distortion theory of quantum data compression with entanglement.