Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, December 7, 2020 11:30 am - 11:30 am EST (GMT -05:00)

Algebraic Graph Theory Seminar - Shahla Nasserasr

Title: Distinct Eignvalues and Sensitivity

Speaker: Shahla Nasserasr
Affiliation: Rochester Institute of Technology
Zoom: Contact Soffia Arnadottir

Abstract: 

For a graph $G$, the class of real-valued symmetric matrices whose zero-nonzero pattern of off-diagonal entries is described by the adjacencies in $G$ is denoted by $S(G)$. The inverse eigenvalue problem for the multiplicities of the eigenvalues of $G$ is to determine for which ordered list of positive integers $m_1\geq m_2\geq \cdots\geq m_k$ with $\sum_{i=1}^{k} m_i=|V(G)|$, there exists a matrix in $S(G)$ with distinct eigenvalues ${\lambda_1,\lambda_2,\cdots, \lambda_k}$ such that $\lambda_i$ has multiplicity $m_i$.

Thursday, December 10, 2020 1:00 pm - 1:00 pm EST (GMT -05:00)

Algebraic Combinatorics Seminar - Laura Colmenarejo

Title: Chromatic symmetric functions of Dyck paths and $q$-rook theory

Speaker: Laura Colmenarejo
Affiliation: UMass Amherst
Zoom: Contact Karen Yeats

Abstract:

Given a graph and a set of colors, a coloring of the graph is a function that associates each vertex in the graph with a color. In 1995, Stanley generalized this definition to symmetric functions by looking at the number of times each color is used and extending the set of colors to $\mathbb{Z}^+$. In 2012, Shareshian and Wachs introduced a refinement of the chromatic functions for ordered graphs as $q$-analogues.

Friday, December 11, 2020 3:30 pm - 3:30 pm EST (GMT -05:00)

Tutte Colloquium - Santanu Dey

Title: Sparse PSD approximation of the PSD cone

Speaker: Santanu Dey
Affiliation:

H. Milton Stewart School of Industrial and Systems Engineering at Georgia Institute of Technology

Zoom: Please email Emma Watson

Abstract:

While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One computational technique used to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k × k principal submatrices — we call this the sparse SDP relaxation.

Monday, January 4, 2021 11:30 am - 11:30 am EST (GMT -05:00)

Algebraic Graph Theory Seminar - Ada Chan

Title: Complex Hadamard diagonalizable graphs

Speaker: Ada Chan
Affiliation: York University
Zoom Contact: Soffia Arnadottir

Abstract: 

A graph is complex Hadamard diagonalizable if its Laplacian matrix is diagonalizable by a complex Hadamard matrix.

This is a natural generalization of the Hadamard diagonalizable graphs introduced by Barik, Fallat and Kirkland.

My interest in these graphs is two-fold:

Monday, January 11, 2021 11:30 am - 11:30 am EST (GMT -05:00)

Algebraic Graph Theory Seminar - Whitney Drazen

Title: K-fractional revival and approximate K-fractional revival on path graphs

Speaker: Whitney Drazen
Affiliation: Northeastern University
Zoom: Contact Soffia Arnadottir

Abstract:

A continuous-time quantum walk is a process on a network of quantum particles that is governed by the transition matrix U(t) = e^{-itA}, where is A is the adjacency matrix of the graph. The two-vertex phenomenon fractional revival occurs between vertices u and v at time t if the columns of U(t) corresponding to u and v are only supported on the rows indexed by those same two vertices. The well-studied perfect state transfer is a special case of this.

Thursday, January 14, 2021 1:00 pm - 1:00 pm EST (GMT -05:00)

Algebraic Combinatorics Seminar - Steve Melczer

Title: Analytic Combinatorics, Rigorous Numerics, and Uniqueness of Biomembranes

Speaker: Steve Melczer
Affiliation: University of Waterloo
Zoom: Contact Karen Yeats

Abstract:

Since the invention of the compound microscope in the early seventeenth century, scientists have marvelled over red blood cells and their surprising shape. An influential model of Canham predicts the shapes of blood cells and similar biomembranes come from a variational problem minimizing the "bending energy" of these surfaces. Because observed (healthy) cells have the same shape in humans, it is natural to ask whether the model admits a unique solution. Here, we prove solution uniqueness for the genus one Canham problem.

Friday, January 15, 2021 3:30 pm - 3:30 pm EST (GMT -05:00)

Tutte Colloquium: Anupam Gupta

Title: Finding and Counting k-cuts in Graphs

Speaker: Anupam Gupta
Affiliation:

Carnegie Mellon University

Zoom: Please email Emma Watson

Abstract:

For an undirected graph with edge weights, a k-cut is a set of edges whose deletion breaks the graph into at least k connected components. How fast can we find a minimum-weight k-cut? And how many minimum k-cuts can a graph have? The two problems are closely linked. In 1996 Karger and Stein showed how to find a minimum k-cut in approximately n^{2k-2} time; their proof also bounded the number of minimum k-cuts by n^{2k-2}, using the probabilistic method.

Monday, January 18, 2021 11:30 am - 11:30 am EST (GMT -05:00)

Algebraic Graph Theory Seminar - Shaun Fallat

Title: Various Maximum Nullities Associated with a Graph

Speaker: Shaun Fallat
Affiliation: University of Regina
Zoom: Contact Soffia Arnadottir

Abstract:

Given a graph, we associate a collection of (typically symmetric) matrices S whose pattern of non-zero entries off of the main diagonal respects the edges in the graph. To this set, we let M denote the maximum possible nullity over all matrices in S. Depending on the choice of the set S, and the family of graphs considered, the parameter M often corresponds to an interesting combinatorial characteristic (planarity, connectivity, coverings, etc.) of the underlying graph.

Thursday, January 21, 2021 1:30 pm - 1:30 pm EST (GMT -05:00)

Algebraic Combinatorics Seminar - Jason Bell

Title: The growth of groups and algebras

Speaker: Jason Bell
Affiliation: University of Waterloo
Zoom: Contact Karen Yeats

Abstract:

We give an overview of the theory of growth functions for associative algebras and explain their significance when trying to understand algebras from a combinatorial point of view.  We then give a classification for which functions can occur as the growth function of a finitely generated associative algebra up to asymptotic equivalence. This is joint work with Efim Zelmanov.

Friday, January 22, 2021 3:30 pm - 3:30 pm EST (GMT -05:00)

Tutte Colloquium - David Gosset

Title: Fast simulation of planar Clifford circuits

Speaker: David Gosset
Aflliation: University of Waterloo
YouTube Link: https://youtu.be/LjmjiEPTSNo

Abstract:

Clifford circuits are a special family of quantum circuits that can be simulated on a classical computer in polynomial time using linear algebra. Recent work has shown that Clifford circuits composed of nearest-neighbor gates in planar geometries can solve certain linear algebra problems provably faster --as measured by circuit depth-- than classical computers.