University of Waterloo
200 University Ave W, Waterloo, ON
N2L 3G1
Phone: (519) 888-4567
Staff and Faculty Directory
Contact the Department of Electrical and Computer Engineering
Yihang Yang
Theoretical and Experimental Study of Magnetic Proximity Effect
Guo-Xing Miao
Magnetic proximity effect in a heterostructure, which consists of a semiconductor thin film or a 2D material sheet and a ferromagnetic insulator film, has a great potential in spintronics applications. However, a complete study of magnetic proximity effect has been highly challenging. We theoretically and experimentally investigate the proximity-induced exchange splitting in a semiconductor thin film or a 2D material sheet adjacent to a ferromagnetic insulator layer. Theoretical calculations indicate that proximity-induced exchange splitting can largely enhance the performance of spintronic applications. Photoluminescence experiment shows that the spin splitting in the semiconductor thin film induced by the proximity effect can be directly controlled by the magnetization of the ferromagnetic insulator layers. Such a sandwich structure not only serves as a platform to clarify the magnetic proximity effect at ferromagnetic insulator/semiconductor interfaces but also provides insights into designing spin-filter superlattices which can generate fully spin-polarized currents.
University of Waterloo
200 University Ave W, Waterloo, ON
N2L 3G1
Phone: (519) 888-4567
Staff and Faculty Directory
Contact the Department of Electrical and Computer Engineering
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.