Title: Positivity and sums of squares in products of free algebras
Speaker: |
William Slofstra |
Affiliation: |
University of Waterloo |
Location |
MC 5501 or please contact Melissa Cambridge for Zoom link |
Abstract: A noncommutative polynomial is said to be positive relative to some constraints if plugging matrices (or more generally, operators on a Hilbert space) satisfying the constraints into the polynomial always yields a positive operator. It is a natural problem to determine whether or not a given polynomial is positive, and if it is, to find some certificate of positivity. This problem is closely connected with noncommutative polynomial optimization, where we want to find matrices or operators that maximize the operator norm of some polynomial, subject to the constraint that some other polynomials in the operators are positive or vanish. When the algebra cut out by the constraints is a free algebra, free group algebra, or similar algebra, it's well-known that a polynomial is positive on operators satisfying the constraints if and only if it's a sum of Hermitian squares in the algebra.