Nasr, A., Hashemi, A., & McPhee, J. (2024). Scalable musculoskeletal model for dynamic simulations of upper body movement Computer Methods in Biomechanics and Biomedical Engineering, 27, 306‐‐337.
References
Filter by:
Caldwell, A., & McPhee, J. (2024). Three‐dimensional golf clubhead‐ball impact models for drivers and irons Sports Engineering, 27, 16.
MohammadiNasrabadi, A., Moammer, G., Quateen, A., Bhanot, K., & McPhee, J. (2024). Landet: an efficient physics-informed deep learning approach for automatic detection of anatomical landmarks and measurement of spinopelvic alignment Journal of Orthopaedic Surgery and Research, 19. https://doi.org/https://doi.org/10.1186/s13018-024-04654-7
Nasr, A., Dickerson, C. R., & McPhee, J. (2023). Experimental study of fully passive, fully active, and active-passive upper-limb exoskeleton efficiency: An assessment of lifting tasks Sensors, 24. https://doi.org/https://doi.org/10.3390/s24010063 (Original work published 2023)
Nasr, A., Hunter, J., Dickerson, C. R., & McPhee, J. (2023). Evaluation of a machine‐learning‐driven active‐‐passive upper‐limb exoskeleton robot: Experimental human‐in‐the‐loop study Wearable Technologies, 4, e13.
Hashemi, A., Orzechowski, G., Mikkola, A., & McPhee, J. (2023). Multibody Dynamics and Control using Machine Learning Multibody System Dynamics.
Zhao, J., Li, X., Shum, C., & McPhee, J. (2023). Control‐oriented computational fuel cell dynamics modeling‐‐model order reduction vs. computational speed Energy, 266, 126488.
MohammadiNasrabadi, A., & McPhee, J. (2023). Preliminary optimization of cup-implant orientation in total-hip arthroplasty using a parametric predictive analysis of lower-limb dynamics influenced by spine stiffness Multibody System Dynamics, 1-26. https://doi.org/https://doi.org/10.1007/s11044-023-09951-3
Krishnan, B., Zanelli, S., Boudaoud, S., Scapucciati, L., McPhee, J., & Jiang, N. (2023). Age-sensitive high density surface electromyogram indices for detecting muscle fatigue using core shape modelling Biomedical Signal Processing and Control, 81. https://doi.org/https://doi.org/10.1016/j.bspc.2022.104446 (Original work published 2023)
Zhao, J., Li, X., Shum, C., & McPhee, J. (2023). A computationally efficient and high‐fidelity 1D steady‐state performance model for PEM fuel cells Journal of Physics: Energy, 5, 015003.